
Operator Preconditioning: Theory, Practice, and
Robustness

Ludmil Zikatanov

The Pennsylvania State University

Mathematics Days in Sofia
July 10-14, 2017, Sofia, Bulgaria

Dedicated to the 70th anniversary of the
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Joint with: X. Hu and J. Adler (Tufts U),
F. Gaspar and C. Rodrigo (U Zaragoza),

J. Xu (Penn State), V. Petkov (U Bordeaux)

L. Zikatanov (Penn State) Operator Preconditioning July 19, 2017 1 / 63



A thought on what is computed today...

• What are the computers computing nowadays?

SEARCH& SORT +

Solve Au = f
A ∈ IRN×N , n� 1

+

· · ·
• Note (folklore): Solution of linear systems Au = f takes about 90% of

the CPU/GPU cycles today.

• Subject: Solution of Au = f for A corresponding to discretized partial
differential equations.

• Areas of application: Physics, engineering, chemistry, . . .. In general: in
the computer simulations of physical phenomena described by linear and
nonlinear PDE.

• Further applications (not in this talk): Modelling of social and bio
phenomena and networks (machine learning).
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A thought on what is computed today (continued)

• Solving Au = f by Gaussian elimination!

• Caution: COST!!! (more on this later as well).

Number of arithemetic operations = O(N3),N →∞

• Improvement: Using that A is sparse and LU decomposition
techniques:Number of arithemetic operations depends on the fill-in in the
factors. (Provably) Efficient algorithms for reducing the fill-in are difficult
to find.
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Solution of Huge linear system of Equations

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

• Black-box, most user-friendly

• Robust, commonly used in practice

• Computationally expensive

Direct Method for A ∈ RN×N : ( 2
3
N3 + 3

2
N2 − 7

6
N)/(flops at peak)

A ∈ RN×N N = 220 N = 224 N = 228 N = 232

≈ 1.0× 106 ≈ 1.6× 107 ≈ 2.6× 108 ≈ 4.3× 109

TaihuLight

6 s 7 h 3.3 yrs 13690 yrs
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Krylov Iterative (Direct) Methods

Given initial guess x0, r0 := f − Ax0, at m-th iteration,

• Construct Krylov subspace

Km(A, r0) := span{r0,Ar0, . . . ,Am−1r0}
• Find xm ∈ x0 +Km(A, r0) by minimization, e.g.,

minimize residual: min
xm∈x0+Km

‖f − Axm‖

Krylov Iterative Method

• Symmetric A: MINRES; general A: GMRES

• Each iteration is cheap: computational cost is O(N2) or O(N)

• Lack of robustness: may converge very slowly

Convergence rate of MINRES: ‖x− xm‖ ≤ δ‖x− xm−1‖
δ =

κ(A)− 1

κ(A) + 1
→ 1 as the condition number κ(A) := ‖A‖‖A−1‖ → ∞
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Algebraic systems arising from PDE discretizations

• Observation: Many of the existing “direct methods” (like Gaussian
elimination) do not use much specific knowledge of the special structure
of A.

• Such methods can not be effectively used for systems arising from various
discretization of PDEs, unless A is very simple, e.g. banded (p-diagonal,
p � N) or N is small.

• A “good” method should use the knowledge of some PDE properties:

• Symmetry, smoothnes of the solution, types of singularities.
• Geometric properties of the physical domains.
• Special properties of the discretization methods.
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Numerical models and available fast solvers

PDE model =⇒ numerical models:

• Hilbert space H equipped with inner product (·, ·)H and norm ‖ · ‖H
• Operator A : H 7→ H′ and PDE: Au = f .

• Example: A = −∆ : H1
0 7→ H−1 (Laplacian) on a bounded smooth domain

with appropriate boundary conditions.

• Numerical model: restricting these equations to finite dimensional space
V, V ′ which “approximate” H and H′.
Linear system: given f ∈ V ′, find u ∈ V such that Au = f

Fast solvers (currently available):

• Advances in the recent years for A = d∗Kd , where
d = {grad or curl or div .

• AMG for d = grad: Brandt, McCormick, Ruge 1983 (original); Vassilevski
2008 (monograph); Xu & Z. (Acta Numerica, May 2017).

• HX (Hiptmair & Xu 2007) preconditioners for d = curl, or d = div.
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Model Problem

Setup:

• Hilbert space H equipped with inner product (·, ·)H and norm ‖ · ‖H
• Operator A : H 7→ H′

Linear problem: given f ∈ H′, find u ∈ H such that Au = f

Well-posedness (is A an isomorphism?):

Continuity of A: sup
0 6=x∈H

sup
06=y∈H

〈Ax, y〉
‖x‖H‖y‖H

≤ β

Continuity of A−1 (inf-sup condition): inf
0 6=x∈H

sup
06=y∈H

〈Ax, y〉
‖x‖H‖y‖H

≥ γ > 0

Example: Stokes equation

Ax = f =⇒
(
−∆ div∗

div 0

)(
u
p

)
=

(
f
0

)
where H = [H1

0 ]3 × L2, and ‖x‖2
H := ‖∇u‖2 + ‖p‖2
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Preconditioner

Preconditioner B

Au = f =⇒ BAu = Bf

Requirements on B: κ(BA) = ‖BA‖‖(BA)−1‖ = O(1)� κ(A)

B ≈ A−1 and the action of B is easy to compute

• Apply Krylov iterative methods to the preconditioned system

• An example: multigrid preconditioner for A = −∆:

Comparison (the timing in blue is an extrapolation):

A ∈ RN×N N = 220 N = 224 N = 228 N = 232

≈ 1.0× 106 ≈ 1.6× 107 ≈ 2.6× 108 ≈ 4.3× 109

TaihuLight 6 s 7 h 3.3 yrs 13690 yrs

Laptop (MG)
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Operator Preconditioning (Loghin & Wathen 2004, Mardal & Winther 2011)

Problem: Given f ∈ H′, find u ∈ H such that Au = f. Here, A : H 7→ H′ is an
isomorphism.
Riesz operator: B : H′ 7→ H, such that for every f ∈ H′,

〈f, x〉 = (Bf, x)H, ∀ x ∈ H

Estimate κ(BA):

‖BA‖ = sup
x∈H

sup
y∈H

|(BAx, y)H|
‖x‖H‖y‖H

= sup
x∈H

sup
y∈H

|〈Ax, y〉|
‖x‖H‖y‖H

≤ β

‖BA−1‖−1 = inf
x∈H

sup
y∈H

|(BAx, y)H|
‖x‖H‖y‖H

= inf
x∈H

sup
y∈H

|〈Ax, y〉|
‖x‖H‖y‖H

≥ γ

=⇒ κ(BA) = ‖BA‖‖BA−1‖ ≤ β

γ

Riesz operator is a robust preconditioner!
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This talk: operator preconditioners for Krylov methods

The operator preconditioners presented here:

• Provably robust w.r.t different parameters.

• Motivated by the well-posedness of the discrete problems (Loghin &
Wathen 2004, Mardal & Winther 2004, 2011, Zulehner 2011, Pestana &
Wathen 2015)

Our focus (two examples)

• PDEs modeling soil consolidation (Biot’s model in poroelasticity)

• Asymptotically disappearing solutions (ADS) of Maxwell’s equations
(Petkov et al. 2011,...; Cakoni et al. 2016).
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Poroelasticity problem

• This problem was firstly studied by Terzaghi in 1925. (Terzaghi,
Erdbaumechanik and Bodenphysikalischen Grundlagen. Deuticke, Leipzig, 1925).

• The general three-dimensional theory was given by Biot in 1941. (Biot M.,

General theory of three dimensional consolidation. J. Appl. Phys. 12 (1941), 155-169.)

• The term poroelasticity was firstly coined by J. Geertsma in 1966.
(Geertsma J., Problems of rocks mechanics in petroleum production engineering, 1966).

• Biot’s models are used to study problems in geomechanics, hydrogeology,
petrol engineering, biomechanics, etc.
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First example: Poroelasticity

Two-field (displacement-pressure) formulation:
− divσ + α∇p = f , σ = 2µε(u) + λ div(u)I (Linear Elasiticy)

− α div ∂tu + divK∇p = g (Darcy’s Law)

Three-field (displacement-velocity-pressure) formulation:
− divσ + α∇p = f , σ = 2µε(u) + λ div(u)I (Linear Elasiticy)

− α div ∂tu − div w = g (Continuity)

w + K∇p = 0 (Darcy’s Law)

σ: effective stress; ε: effective strain; λ and µ: Lamé coefficients;
K : hydraulic conductivity; α: Biot-Willis constant.

Terzaghi 1925, Biot 1941, Geertsma 1966
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Example of Coupled Problem: Maxwell’s system

Maxwell’s system: Let O be a bounded and connected domain, we consider the
Maxwell’s equation in the exterior of Ō, i.e. Ω = R3\Ō

Bt + curl E = 0 [Faraday’s Law ]

εEt − curlµ−1B = −j [Ampere’s Law]

div εE = ρ [Gauß’s law]

div B = 0 [Solenoidal constraint]

ε - permitivity of the medium; µ - magnetic permeability

Remark: computationally, we use Ω = S\Ō where S is a ball in R3 with
sufficiently large radius. We also impose impedance boundary condition on the
boundary of O:

(1 + γ)Etan = −n × Btan
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Linear Systems in Block Form

After discretization: Au = f

Poroelasiticy: A =

(
Au α grad
−α div −τ divK grad

)
or

 Au α grad 0
−α div 0 −τ div

0 τ grad τIw



Maxwell’s: A =

 2IB τ curl
−τ curl 2IE + τZ grad

τ div 2Ip


• impedance bc → Z; div E = ρ → Lagrange multiplier p

Properties of the linear systems:

• Large, indefinite, and with strong coupling: Difficult to solve for either
direct methods or traditional iterative methods

• Many physical parameters (λ, µ,K , α, µ, ε) and discretization
parameters (h, τ): Challenging to design linear solvers that are robust
with respect to the parameters
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Block Preconditioners for Coupled Problems

An incomplete literature review

Discretizations and Preconditioners for Poroelasticity:

• Well posedness and convergence Murad, Loula, Thomée 94–96

• ILU (Gambolati, Pini, & Ferronato 2003)

• Domain decomposition methods (Girault, Pencheva, Wheeler, & Wildey 2011; Florez, Wheeler, &Rodriguez

2013)

• Multigrid methods (Gaspar, Lisbona, & Rodrigo 2009)

• Approximate block factorization (Vassilevski, Lazarov 1996; Vassilevski 2008, Janna, Ferronato, & Gambolati

2009, White, Castelletto, & Tchelepi 2016, Castelletto, White, & Ferronato 2016)

• Parameter-robust preconditioning ( Axelsson, Padiy 1999, Vassilevski 2008, Axelsson, Blaheta, Neytcheva

2016; Lee, Mardal, & Winther 2015; Baerland, Lee, Mardal& Winther 2017; Hong & Kraus 2017)

Preconditioners for the full Maxwell’s system (used also in Magnetohydrodynamics
(MHD) simulations):

• ILU (Tóth, Keppens, & Botchev 1998, 1999; Badia, Martin, & Planas 2014)

• Domain decomposition methods (Ovtchinikov, Dobrain, Cai, & Keyes 2007; Reynolds, Samtaney, &

Tiedeman, 2012)

• Multigrid methods (Shadid, Pawlovski, Banks, Chacón, Lin, & Tuminaro 2010; Benson, Adler, Cyr, MacLachlan, &

Tuminaro, 2015)

• Approximate block factorization (Shadid, Cyr, Pawlovski, Tuminaro, Chacón, & Lin, 2010; Cyr, Shadid,

Tuminaro, Pawlowski, & Chacón 2013; Phillips, Elman, Cyr, Shadid, & Pawlowski 2014)
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Block Preconditioners for Coupled Problems Norm-equivalent Preconditioner

Norm-equivalent Preconditioner

Preconditioner M : H′ 7→ H is symmetric positive definite (MA : H 7→ H)

Norm-equivalence

If A is well-posed w.r.t the norm ‖ · ‖H. Choose M such that

c1‖x‖2
H ≤ ‖x‖2

M−1 ≤ c2‖x‖2
H

then M and A are norm-equivalent and κ(MA) ≤ c2β
c1γ

Theorem (Preconditioned MINRES)

The following estimate holds:

‖A(x− xm)‖M ≤ 2δm‖A(x− x0)‖M , δ =
κ(MA)− 1

κ(MA) + 1

Question: How do we choose M?

Loghin & Wathen 2004, Mardal & Winther 2004, 2011, Pestana & Wathen 2015
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Block Preconditioners for Coupled Problems Norm-equivalent Preconditioner

Example: Stokes Equation

Well-posedness: well-posed w.r.t the norm ‖x‖2
H = ‖∇u‖2 + ‖p‖2

Norm-equivalent preconditioners:

• Block diagonal preconditioner: ‖x‖2
H = 〈B−1x, x〉

Riesz operator : B =

(
−∆ 0

0 Ip

)−1

=

(
(−∆)−1 0

0 (Ip)−1

)
Then c1 = c2 = 1 and κ(BA) ≤ β/γ

• Inexact block diagonal preconditioner: “cheap” but “good” blocks

M =

(
Qu 0
0 Qp

)
Spectral equivalent Qu and Qp:

Qu : DD/MG method Qp: Jacobi method

Then κ(MA) ≤ c2β/c1γ
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Block Preconditioners for Coupled Problems FoV-equivalent Preconditioner

Field-of-Values Equivalent Preconditioner

Preconditioner ML : H′ 7→ H is a general operator (MLA : H 7→ H)

Field-of-Values equivalence

The operators ML and A are FoV-equivalent, if for any x ∈ H,

σ ≤ (MLAx, x)H
(x, x)H

,
‖MLAx‖H
‖x‖H

≤ Υ.

Theorem (Convergence of preconditioned GMRES)

If xm is the m-th iteration of GMRES method and x is the exact solution,

‖MLA(x− xm)‖H
‖MLA(x− x0)‖H

≤
(

1− σ2

Υ2

)m/2

Question: How do we choose ML?

Loghin & Wathen 2004
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Block Preconditioners for Coupled Problems FoV-equivalent Preconditioner

Example: Stokes Equation

Well-posedness: well-posed w.r.t the norm ‖x‖2
H = ‖∇u‖2 + ‖p‖2

FoV-equivalent preconditioners:

• Lower triangular preconditioner: Riesz operator

+ lower triangular

BL =

(
−∆

0
div

Ip

)−1

then BL and A are FoV-equivalent with σ = σ(γ) and Υ = Υ(β)

• Inexact lower triangular preconditioner: “cheap” but “good” blocks

ML =

(
Q−1

u 0
div

ρ

Q−1
p

)−1

• Theory requires a parameter ρ > ρ0 (Loghin & Wathen 2004)

• In practice, ρ = 1
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Block Preconditioners for Coupled Problems FoV-equivalent Preconditioner

Remove ρ

Idea: use ‖ · ‖M−1 induced by M = diag(Qu ,Qp) instead of ‖ · ‖H

Theorem (Ma, Hu, Hu, & Xu 2016)

If the linear system is well-posed w.r.t ‖ · ‖H, then

ML =

(
Q−1

u 0
div Q−1

p

)−1

and A are FoV-equivalent, i.e.,

σ ≤ (x,MLAx)M−1

(x, x)M−1

,
‖MLAx‖M−1

‖x‖M−1

≤ Υ.

provided ‖Iu −QuA‖A ≤ δ < 1.

• Qu needs to be convergent

• σ and Υ only depend on β, γ, δ, and the quality of spectral equivalent
approximations

• Preconditioned GMRES converges uniformly
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Block Preconditioners for Coupled Problems FoV-equivalent Preconditioner

Right Preconditioning

Preconditioner MU : H′ 7→ H is a general operator (AMU : H′ 7→ H′)

Ax = f =⇒ AMUx
′ = f, x′ = M−1

U x ∈ H′

Field-of-Values equivalence

The operators MU and A are FoV-equivalent, if for any x′ ∈ H′,

σ ≤ (AMUx
′, x′)M

(x′, x′)M
,
‖AMUx

′‖M
‖x′‖M

≤ Υ.

Example: Stokes equation

• Upper triangular preconditioner: Riesz operator + upper triangular

BU =

(
−∆ div∗

0 Ip

)−1

• Inexact upper triangular preconditioner:

MU =

(
Q−1

u div∗

0 Q−1
p

)−1

where ‖Iu −QuA‖A ≤ δ < 1.
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Example: Poroelasticity

Poroelasticity: Numerical Difficulties

Terzaghi’s problem

−E ∂
2u

∂x2
+
∂p

∂x
= 0, x ∈ (0, 1),

∂

∂t

(
∂u

∂x

)
− K

∂2p

∂x2
= 0.

E
∂u

∂x
= −1, p = 0, on x = 0,

u = 0,
∂p

∂x
= 0, on x = 1,

∂u

∂x
= 0, x ∈ (0, 1), t = 0.

 

 ଴ߪ

P1-P1 + Implicit Euler

P2-P1 + Implicit Euler

• Pressure may have nonphysical oscillations (low permeability/small time step)

• Using Stokes-stable pair reduces the oscillations but does not solve the problem
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Example: Poroelasticity Stabilized Two-field Formulation

Two-field Formulation with Stabilization

Stabilized scheme: Find un
h ∈ Vh ⊂ H1

D and pn
h ∈ Qh ⊂ H1

D,p

a(un
h , vh)− α(div vh, pn

h) = (f (tn), vh), ∀vh ∈ Vh

− α(div ∂tun
h , qh)− ap(pn

h , qh)− εh2(∇∂tp
n
h ,∇qh)︸ ︷︷ ︸

stabilization term

= 0, ∀qh ∈ Qh

where ∂tun
h := (un

h − un−1
h )/τ , ∂tpnh := (pnh − pn−1

h )/τ , and

a(u, v) := 2µ

∫
Ω
ε(u) : ε(v) + λ

∫
Ω

div u div v , ap(p, q) :=

∫
Ω
K∇p · ∇q

Choice of the finite-element pair Vh and Qh:

• Stokes-stable: MINI element/P2-P1

• Stokes-unstable: P1-P1

(+ stabilization)

Brezzi & Pitkäranta 1984; Aguilar, Gaspar, Lisbona, & Rodrigo 2008;

Rodrigo, Gaspar, Hu, & Z. 2016
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Stabilized scheme: Find un
h ∈ Vh ⊂ H1

D and pn
h ∈ Qh ⊂ H1

D,p

a(un
h , vh)− α(div vh, pn

h) = (f (tn), vh), ∀vh ∈ Vh

− α(div ∂tun
h , qh)− ap(pn

h , qh)− εh2(∇∂tp
n
h ,∇qh)︸ ︷︷ ︸

stabilization term

= 0, ∀qh ∈ Qh

where ∂tun
h := (un

h − un−1
h )/τ , ∂tpnh := (pnh − pn−1

h )/τ , and

a(u, v) := 2µ

∫
Ω
ε(u) : ε(v) + λ

∫
Ω

div u div v , ap(p, q) :=

∫
Ω
K∇p · ∇q

Choice of the finite-element pair Vh and Qh:

• Stokes-stable: MINI element/P2-P1

• Stokes-unstable: P1-P1(+ stabilization)

Brezzi & Pitkäranta 1984; Aguilar, Gaspar, Lisbona, & Rodrigo 2008;

Rodrigo, Gaspar, Hu, & Z. 2016
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Example: Poroelasticity Stabilized Two-field Formulation

Effectiveness of the Stabilization

P1-P1 without stabilization P1-P1 with stabilization

P2-P1 without stabilization P2-P1 with stabilization
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Example: Poroelasticity Stabilized Two-field Formulation

Well-posedness

Linear system: Ax = f, x = (u, p)T

A =

(
Au αBT

αB −τAp − εh2Lp

)
where a(u, v)→ Au , −(div u, p)→ B, (K∇p,∇q)→ Ap , (∇p,∇q)→ Lp

A standard approach: assume Stokes-stable pair and ε = 0(
Au αBT

αB −τAp

)
=⇒

(
Au αBT

−αB τAp

)
• Well-posedness follows from the fact that Au and Ap are SPD

• Argument fails as τ → 0 6=⇒ robust block preconditioners

For example, it is well-known that the preconditioner(
Au αBT
0 τAp

)
only works when coupling is weak and diverges for many cases of practical

interest (White, Castelletto, & Tchelepi 2016)
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Example: Poroelasticity Stabilized Two-field Formulation

Well-posedness

In order to achieve the robustness of the preconditioners:
• Proper weighted norms should be used

• Constants should be independent of the parameters

Weighted norm: ‖x‖2
H := ‖u‖2

Au + τ‖p‖2
Ap

+ εh2‖p‖2
Lp

+ α2

λ+2µ/d
‖p‖2

‖u‖2
Au := 2µ‖ε(u)‖2 + λ‖ div u‖2

, ‖p‖2
Ap

:= (K∇p,∇p), ‖p‖2
Lp := ‖∇p‖2

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

Assume ε = θα2

λ+2µ/d
with θ > 0, then the linear system is well-posed w.r.t

‖ · ‖H. The constants γ and β do not depend on the physical parameters (λ, µ,
α, K) and the discretization parameters (h, τ).
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Example: Poroelasticity Stabilized Two-field Formulation

Norm-equivalent Preconditioner

Weighted norm: ‖x‖2
H = ‖u‖2

Au + τ‖p‖2
Ap

+ εh2‖p‖2
Lp

+ α2

λ+2µ/d
‖p‖2

Norm-equivalent preconditioner: block diagonal

BD =

(
Au 0

0 τAp + εh2Lp + α2

λ+2µ/d
Ip

)−1

and MD =

(
Qu 0
0 Qp

)
Qu and Qp are spectral equivalent approximations, e.g., DD/MG

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

If the linear system is well-posed w.r.t ‖ · ‖H, then we have

κ(BDA) ≤ C1 and κ(MDA) ≤ C2

where C1 and C2 are constants independent of the physical parameters (λ, µ,
α, K) and the discretization parameters (h, τ).
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Example: Poroelasticity Stabilized Two-field Formulation

FoV-equivalent Preconditioners: Left Preconditioning

Block lower triangular preconditioners:

BL =

(
Au 0

−αB τAp + εh2Lp + α2

λ+2µ/d
Ip

)−1

and ML =

(
Q−1

u 0
−αB Q−1

p

)−1

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

If the linear system is well-posed w.r.t ‖ · ‖H, then we have

σ ≤
(BLAx , x)

B−1
D

(x , x)
B−1
D

,
‖BLAx‖

B−1
D

‖x‖
B−1
D

≤ Υ

and, if ‖I −QuAu‖Au ≤ δ < 1, we have

σ ≤
(MLAx , x)

M−1
D

(x , x)
M−1

D

,
‖MLAx‖

M−1
D

‖x‖
M−1

D

≤ Υ

where σ and Υ are constants independent of the physical parameters
(λ, µ, α, K) and the discretization parameters (h, τ).
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Example: Poroelasticity Stabilized Two-field Formulation

FoV-equivalent Preconditioners: Right Preconditioning

Block upper triangular preconditioners:

BU =

(
Au αBT

0 τAp + εh2Lp + α2

λ+2µ/d
Ip

)−1

and MU =

(
Q−1

u αBT

0 Q−1
p

)−1

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

If the linear system is well-posed w.r.t ‖ · ‖H, then we have

σ ≤ (ABUx ′, x ′)BD

(x ′, x ′)BD

,
‖ABUx ′‖BD

‖x ′‖BD

≤ Υ

and, if ‖Iu −QuAu‖Au ≤ δ < 1, we have

σ ≤ (AMUx ′, x ′)MD

(x ′, x ′)MD

,
‖AMUx ′‖MD

‖x ′‖MD

≤ Υ

where σ and Υ are constants independent of the physical parameters
(λ, µ, α, K) and the discretization parameters (h, τ).
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Example: Poroelasticity Stabilized Two-field Formulation

Relationship with a Sequential-implicit Scheme

Fixed-stress splitting scheme: assume Stokes-stable pair and ε = 0(
Au αB
0 Sp

)(
uk+1

pk+1

)
=

(
0 0

−αB α2

K̃
Ip

)(
uk

pk

)
+

(
fu
fp

)
where Sp = τAp + α2

K̃
Ip, K̃ is a suitable bulk modulus

Recast as linear iterative method:(
uk+1

pk+1

)
=

(
uk

pk

)
+

(
Au αB
0 Sp

)−1

︸ ︷︷ ︸
BU

[(
fu
fp

)
− A

(
uk

pk

)]

Our analysis provides:

• Theory of using fixed-stress splitting scheme as a preconditioner

• A good choice of K̃ : K̃ = λ+ 2µ/d

• Inexact version of fixed-stress splitting scheme and its analysis

Kim, Tchelepi, & Juanes 2011; White, Castelletto, & Tchelepi 2015
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Example: Poroelasticity Stabilized Two-field Formulation

3D Footing Probelm16 GASPAR ET AL.

Figure 7. Domain of the 3D footing problem

Table V. Material parameters for the 3D poroelastic problem.

Property Value Unit

Young’s modulus 3 × 104 N/m2

Poisson’s ratio 0.45 -
Permeability 10−7 m2

Fluid viscosity 10−3 Pas

Figure 8. Numerical solution for pressure with the corresponding deformation at time = 0.5 with a
323–mesh

6. Conclusion

For systems of equations with dominating grad-div term, the convergence factor of
basic multigrid methods increases very quickly as the mesh size approaches zero.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0–0
Prepared using nlaauth.cls

• Uniform porous material

• Apply uniform load on the top

• Drained on all sides

• Tolerance of Krylov iterative methods is 10−6
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Example: Poroelasticity Stabilized Two-field Formulation

Performance of Preconditioner: K = 10−6 and ν = 0.2
(1) Preconditioner BD

PPPPPτ
h

1/4 1/8 1/16 1/32

0.1 7 7 8 *
0.01 7 7 8 *
0.001 7 7 8 *
0.0001 7 7 8 *

(2) Preconditioner BL

PPPPPτ
h

1/4 1/8 1/16 1/32

0.1 5 5 6 *
0.01 5 5 6 *
0.001 5 5 6 *
0.0001 5 5 6 *

(3) Preconditioner BU

PPPPPτ
h

1/4 1/8 1/16 1/32

0.1 4 4 4 *
0.01 4 4 5 *
0.001 5 5 6 *
0.0001 5 5 6 *

(4) Preconditioner MD

PPPPPτ
h

1/4 1/8 1/16 1/32

0.1 8 8 9 9
0.01 8 8 9 9
0.001 8 8 9 9
0.0001 8 8 9 9

(5) Prconditioner ML

PPPPPτ
h

1/4 1/8 1/16 1/32

0.1 6 6 8 8
0.01 6 6 8 8
0.001 6 6 8 8
0.0001 7 6 8 8

(6) Preconditioner MU

PPPPPτ
h

1/4 1/8 1/16 1/32

0.1 6 6 8 8
0.01 6 6 8 8
0.001 6 6 8 8
0.0001 6 7 8 8

• The symbol ∗ in the tables on the left is for cases when the direct solver ran out of memory.
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Example: Poroelasticity Stabilized Two-field Formulation

Performance of Preconditioners: Varying K and ν

Table: Varying K : ν = 0.2, h = 1/16 and τ = 0.01

1 10−2 10−4 10−6 10−8 10−10

BD 4 7 8 8 8 8
BL 2 5 6 6 6 6
BU 3 4 5 5 5 5
MD 5 8 9 9 9 9
ML 5 7 8 8 8 8
MU 5 7 8 8 9 8

Table: Varying ν: K = 10−6, h = 1/16 and τ = 0.01

0.1 0.2 0.4 0.45 0.49 0.499
BD 7 8 11 11 12 12
BL 5 6 8 8 8 9
BU 4 5 6 6 5 4
MD 8 9 12 13 14 13
ML 7 8 11 11 12 12
MU 7 8 7 8 17 11
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Example: Poroelasticity Three-field Formulation

Three-field Formulation

Choices of the finite-element spaces:
• Displacement u: Crouzeix-Raviart element
• Darcy velocity w : lowest order Raviart-Thomas element
• Pressure p: piecewise constant element

Linear system: Ax = f, x = (u, p,w)T

A =

 Au αBT
u 0

−αBu 0 −τBw

0 τBT
w τIw


Weighted norm:

‖x‖2
H := ‖u‖2

Au + α2

(
λ+

2µ

d

)−1

‖p‖2 + τ‖w‖2
K−1 +

τ 2

α2

(
λ+

2µ

d

)
‖∇ · w‖2

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

The linear system is well-posed w.r.t ‖ · ‖H and the constants γ and β do not
depend on the physical parameters (λ, µ, α, K) and the discretization
parameters (h, τ).
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Example: Poroelasticity Three-field Formulation

Block Preconditioners

Norm-equivalent preconditioners: block diagonal

BD =

Au 0 0

0 α2

λ+ 2µ
d

Ip 0

0 0 τIw + τ2

α2

(
λ+ 2µ

d

)
Aw


−1

FoV-equivalent preconditioners: block triangular

BL =

 Au 0 0

−αBu
α2

λ+ 2µ
d

Ip 0

0 τBT
w τIw + τ2

α2

(
λ+ 2µ

d

)
Aw


−1

BU =

Au αBT
u 0

0 α2

λ+ 2µ
d

Ip −τBw

0 0 τIw + τ2

α2

(
λ+ 2µ

d

)
Aw


−1
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Example: Poroelasticity Three-field Formulation

Block Preconditioners

Norm-equivalent preconditioners: block diagonal

MD =

Qu 0 0
0 Qp 0
0 0 Qw



FoV-equivalent preconditioners: block triangular

ML =

 Q−1
u 0 0

−αBu Q−1
p 0

0 τBT
w Q−1

w

−1

MU =

Q−1
u αBT

u 0
0 Q−1

p −τBw

0 0 Q−1
w

−1

Qu : DD/MG Qp: Jacobi Qw : Hiptmair-Xu
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Example: Poroelasticity Three-field Formulation

Fixed-Stress Splitting Scheme for Three-field Formulation

Linear iterative method:uk+1

pk+1

w k+1

 =

uk

pk

w k

+ BU

fu
fp
fw

− A

uk

pk

w k



“Fixed-stress” splitting scheme:
Au αBT

u 0

0 α2

λ+ 2µ
d

Ip −τBw

0 0 τIw + τ 2 λ+ 2µ
d

α2 Aw


uk+1

pk+1

w k+1



=


0 0 0

−αBu
α2

λ+ 2µ
d

Ip 0

0 τBT
w τ 2 λ+ 2µ

d
α2 Aw


uk

pk

w k

+

fu
fp
fw


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Example: Poroelasticity Three-field Formulation

Square Domain Problem with Uniform Load

 

Ω 

p = 0 

𝛔 ⋅ 𝐧 = (0,−1)t 

∇p ⋅ 𝐧 = 0 

𝐮 = 0 

Figure: Computational domain and boundary conditions

• Uniform porous material

• Apply a uniform load on the top

• Impermeable and rigid on the other sides

• Tolerance of Krylov iterative method is 10−6
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Example: Poroelasticity Three-field Formulation

Performance of Preconditioner: K = 10−6 and ν = 0.2
(1) Preconditioner BD

PPPPPτ
h

1/8 1/16 1/32 1/64

0.1 42 46 48 52
0.01 41 43 47 47
0.001 41 43 43 47
0.0001 41 43 43 46

(2) Preconditioner BL

PPPPPτ
h

1/8 1/16 1/32 1/64

0.1 22 23 24 25
0.01 22 22 23 25
0.001 22 22 23 24
0.0001 22 22 23 24

(3) Preconditioner BU

PPPPPτ
h

1/8 1/16 1/32 1/64

0.1 23 24 26 27
0.01 20 21 23 24
0.001 18 18 21 22
0.0001 18 18 19 19

(4) Preconditioner MD

PPPPPτ
h

1/8 1/16 1/32 1/64

0.1 42 48 54 57
0.01 42 44 49 50
0.001 42 44 49 49
0.0001 42 46 49 50

(5) Prconditioner ML

PPPPPτ
h

1/8 1/16 1/32 1/64

0.1 24 26 26 31
0.01 24 25 27 28
0.001 24 25 27 28
0.0001 24 25 27 28

(6) Preconditioner MU

PPPPPτ
h

1/8 1/16 1/32 1/64

0.1 26 30 29 32
0.01 24 26 26 28
0.001 25 24 24 26
0.0001 25 29 30 30
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Example: Poroelasticity Three-field Formulation

Performance of Preconditioners: Varying K and ν

Table: Varying K : ν = 0.2, h = 1/32 and τ = 0.01

1 10−2 10−4 10−6 10−8 10−10

BD 80 61 47 47 47 47
BL 54 41 23 23 23 23
BU 52 41 23 23 23 23
MD 98 63 49 49 49 49
ML 76 45 27 27 27 27
MU 68 44 30 30 30 30

Table: Varying ν: K = 10−6, h = 1/32 and τ = 0.01

0.1 0.2 0.4 0.45 0.49 0.499
BD 51 47 30 24 17 13
BL 26 23 15 12 9 7
BU 26 23 16 13 9 6
MD 53 49 35 29 24 21
ML 30 27 19 16 14 13
MU 33 30 22 17 18 20
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Example: Maxwell’s system

Maxwell’s System

Let O be a bounded and connected domain, we consider the Maxwell’s
equation in the exterior of Ō, i.e. Ω = R3\Ō

Bt + curl E = 0 [Faraday’s Law ]

εEt − curlµ−1B = −j [Ampere’s Law]

div εE = ρ [Gauß’s law]

div B = 0 [Solenoidal constraint]

ε - permitivity of the medium; µ - magnetic permeability

Remark: computationally, we use Ω = S\Ō where S is a ball in R3 with
sufficiently large radius
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Example: Maxwell’s system

Boundary Conditions

Perfect Conductor Boundary Conditions on the Outer Sphere S
E × n = 0 and B · n = 0, where n is the outward unit normal

Impedance/Dissipative Boundary Conditions on Γi = ∂Ω ∩ ∂O
(1 + γ)Etan = −n × Btan or equivalently (1 + γ)Etan = −n × B

Remarks:

• Many materials are not perfect conductors, but allow the fields to
penetrate only a small distance

• Notation: Etan := E − (n · E) n
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Example: Maxwell’s system

Asymptotically Disappearing Solutions

Asymptotically Disappearing Solutions (ADS)

Solutions to Maxwell’s equations, whose total energy decays exponentially with
time.

• Dissipative systems (boundary conditions) are of interest because not
everything is perfect conductor.

• The existence of ADS shows that the leading term of the back-scattering
operator is negligibly small and indicates loss of information. (Majda, 1976)

• Shown by Colombini, Petkov, and Rauch that with appropriate dissipative
boundary conditions on the exterior of a sphere, ADS are obtained.

Ref: F. Colombini, V. Petkov, and J. Rauch, Incoming and disappearing solutions for Maxwell’s equations, Proc. Amer. Math.
Soc., 139 (2011).
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Example: Maxwell’s system

Asymptotically Disappearing Solutions

Asymptotically Disappearing Solutions

The function u = (E ,B) is called asymptotically disapearing solution if

u(t, x) = eλtw(x),
with Re(λ) < 0.

• For the sphere (and other domains with smooth boundary), the spectra of
the semi-group generator corresponding to the dissipative b.c. has isolated
eigenvalues with Re(λ) < 0. They are all of finite multiplicity.

• The dimension of the space spanned by the generalized eigenfunctions
corresponding to these eigenvalues, λ, is also finite.

• The corresponding eigenfunctions, when taken as initial conditions, lead
to asymptotically disappearing solutions.
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Example: Maxwell’s system

Variational Weak Form

• Introduce an auxiliary variable p associated with the constraint of E
• Himp(div) = {v ∈ H(div) such that v · n

∣∣
∂Ω\Γi

= 0}
• Himp(curl) = {v ∈ H(curl) such that v × n

∣∣
∂Ω\Γi

= 0}
• H0(grad) = {v ∈ H1(Ω) such that v

∣∣
∂Ω

= 0}

Weak Form: Find (B,E , p) ∈ Himp(div; t)× Himp(curl; t)× H0(grad; t), ∀
(C ,F , q) ∈ Himp(div)× Himp(curl)× H1

0 (Ω) and for all t > 0,

〈µ−1Bt ,C〉+ 〈µ−1 curl E ,C〉 = 0

〈εEt ,F 〉+ 〈ε grad p,F 〉 − 〈µ−1B, curl F 〉+ (1 + γ)

∫
Γi

〈Etan,Ftan〉 = −(j ,F )

〈pt , q〉 − 〈εE , grad q〉 = 0

Proposition [Adler, Petkov, & Z. 2013]

• If div B0 = 0, then div B = 0 for all t > 0

• If 〈E0, grad q〉 = 0, then 〈E , grad q〉 = 0, ∀q ∈ H0(grad), for all t > 0
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Example: Maxwell’s system

Structure-Preserving Discretization

• Bn
h ∈ Hh,imp(div) ⊂ Himp(div): Raviart-Thomas element

• En
h ∈ Hh,imp(curl) ⊂ Himp(curl): Nédélec element

• pnh ∈ Hh,0(grad) ⊂ H0(grad): linear element

Full Discretization: Crank-Nicolson scheme for temporal discretization

〈µ−1 Bn
h − Bn−1

h

τ
,Ch〉+ 〈µ−1 curl

En
h + En−1

h

2
,Ch〉 = 0

〈εE
n
h − En−1

h

τ
,Fh〉+ 〈ε grad pnh + grad pn−1

h

2
,Fh〉 − 〈µ−1 Bn

h + Bn−1
h

2
, curl Fh〉

+(1 + γ)

∫
Γi

〈
En
h,tan + En−1

h,tan

2
,Fh,tan〉 = −(

j n + j n−1

2
,Fh)

〈p
n
h − pn−1

h

τ
, qh〉 − 〈ε

En
h + En−1

h

2
, grad qh〉 = 0

Proposition [Adler, Petkov, & Z. 2013]

• If div B0
h = 0, then div Bn

h = 0 for all n ≥ 1

• If 〈E0
h , grad q〉 = 0, then 〈En

h , grad q〉 = 0, ∀q ∈ Hh,0(grad), for all n ≥ 1
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h , grad q〉 = 0, ∀q ∈ Hh,0(grad), for all n ≥ 1
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Example: Maxwell’s system

Poincaré-Steklov operator definition of ADS

• ADS: j = 0, and (E ,B)← e−ηt(E ,B), with Re(η) > 0.
• From the weak form we have: B = η−1 curl E and taking F = ∇q in the

second equation gives p = 0.
• Thus, (E ,B = η−1 curl E) is an ADS iff

〈A(η)E ,F 〉 = η〈E ,F 〉+
1

η
〈curl E , curl F 〉 = (1 + γ)〈Etan,Ftan〉Γi .

• Let S(η) be the Poincaré-Steklov operator for A(η), i.e. the Schur
complement corresponding to “interior/boundary” splitting.

• Action of S(η), i.e. S(η)g for a given g (on the boundary):

• Solve A(η)E = 0, in Ω and Etan = g on Γi .
• Define 〈S(η)g ,w〉Γi := 〈A(η)E , w̃〉, for all w in some trace space.
• Here, for w given on Γi , w̃ is an H(curl) bdd extension of w in Ω.
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1

η
〈curl E , curl F 〉 = (1 + γ)〈Etan,Ftan〉Γi .

• Let S(η) be the Poincaré-Steklov operator for A(η), i.e. the Schur
complement corresponding to “interior/boundary” splitting.

ADS definition:

Given γ, find η ∈ C, such that (1 + γ) is an eigenvalue of S(η). The
corresponding eigenvector is Etan which determines E uniquelly.

• Non-linear (inverse) eigenvalue problem and its solution by Beyn’s method
based on contour integration (Beyn 2012) requires repeated computation
of the action of S(η).
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Example: Maxwell’s system

Difficulties in modeling ADS:

• Time dependent problem: Solving the linear system on every time step;

• Poincaré-Steklov formulation: Calculating just one the action of S(η)
requires solution of the discretized Maxwell’s system.

• Efficient Solver is needed!!

For numerical modelling of ADS:

• Design efficient solvers for solving linear systems at each time step

• Operator preconditioners based on exact block factorization

• Show robustness with respect to the physical and discretization parameters
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Efficient Solvers for ADS of Maxwell’s Equation

Linear systems modeling ADS

Linear system: Find (B,E , p) ∈ Hh,imp(div)× Hh,imp(curl)× Hh,0(grad), such that
for all (C ,F , q) ∈ Hh,imp(div)× Hh,imp(curl)× Hh,0(grad),

2

τ
〈µ−1B,C〉+ 〈µ−1 curl E ,C〉 = 〈gB ,C〉

2

τ
〈εE ,F 〉+ 〈ε grad p,F 〉 − 〈µ−1B, curl F 〉+ (1 + γ)

∫
Γi

〈Etan,Ftan〉 = (gE ,F )

2

τ
〈p, q〉 − 〈εE , grad q〉 = 〈gp , q〉

Matrix form:

Ax = F ⇐⇒

 2
τ
Mf MfKfe

−KT
feMf

2
τ
Me + Z MeGev
−GTevMe

2
τ
Mv

B
E
p

 =

gB
gE
gp

 .

• Mf , Me , and Mv are the mass matrices of Raviart-Thomas, Nédélec, and
linear elements

• Gev and Kfv are the edge-to-vertex and face-to-edge incidence matrices
• Z is the matrix associated with the impedance boundary condition
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linear elements

• Gev and Kfv are the edge-to-vertex and face-to-edge incidence matrices
• Z is the matrix associated with the impedance boundary condition

L. Zikatanov (Penn State) Operator Preconditioning July 19, 2017 49 / 63



Efficient Solvers for ADS of Maxwell’s Equation Preconditioners based on well-posedness (as for poroelasticity)

Well-posedness

Design robust preconditioners: Ax = F and A : H 7→ H′, H is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

Well-posedness ⇒ A : H 7→ H′ is an isomorphism ⇒ an isomorphism B : H′ 7→ H is a preconditioner

• Use weighted norms such that the constants in continuity and inf-sup conditions
are independent of physical and discretization parameters

Weighted norm: ‖ (B,E , p) ‖2
H := ‖B‖2

div + ‖E‖2
curl + ‖p‖2

grad

‖B‖2
div :=

2

τ
‖B‖2

µ−1 + ‖ div B‖2
µ−1 ,

‖E‖2
curl :=

2

τ
‖E‖2

ε +
τ

2
‖ curl E‖2

µ−1 + (1 + γ)‖E‖2
Γi
,

‖p‖2
grad :=

2

τ
‖p‖2 +

τ

2
‖ grad p‖2

ε,

Theorem (Adler, Hu, & Z. 2016)

The linear system is well-posed w.r.t ‖ · ‖H and the constants involved do not depend
on the physical parameters µ, ε and the discretization parameters h, τ .
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioners based on well-posedness (as for poroelasticity)

Diagonal Block Preconditioner for ADS

Diaongal Block Preconditioner: Riesz operator w.r.t 〈·, ·〉H, i.e. BD : H′ 7→ H,
〈BDF , x〉H = 〈F , x〉

BD =

 2
τ
Mf 0 0

0 τ
2
KT

feMfKfe + 2
τ
Me + Z 0

0 0 τ
2
GTevMvGev + 2

τ
Mv

−1

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, κ(BDA) ≤ C. The constant C is independent of the
physical parameters µ, ε and the discretization parameters h, τ .

• Preconditioned Krylov iterative method converges uniformly (Ma, Hu, Hu, & Xu 2016)

• What about the solenoidal property of B: div B = 0?

Theorem (Adler, Hu, & Z. 2016)

If div B0 = 0 and div gB = 0, then all the iterations of Krylov iterative method using
preconditioner BD preserves the divergence-free condition exactly, i.e. div B` = 0 for
` = 1, 2, · · ·

• How about computational cost? Inverting the diagonal blocks is expensive
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• What about the solenoidal property of B: div B = 0?

Theorem (Adler, Hu, & Z. 2016)

If div B0 = 0 and div gB = 0, then all the iterations of Krylov iterative method using
preconditioner BD preserves the divergence-free condition exactly, i.e. div B` = 0 for
` = 1, 2, · · ·

• How about computational cost? Inverting the diagonal blocks is expensive
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioners based on well-posedness (as for poroelasticity)

Inexact Diagonal Block Preconditioner

BD =


(

2
τMf

)−1 0 0

0
(
τ
2 KT

feMfKfe + 2
τMe + Z

)−1
0

0 0
(
τ
2 GT

evMvGev + 2
τMv

)−1



Make it practical: approximate each diagonal block

• It is easy to verify that κ(BDA) ≤ C

• B is no longer solenoidal! (fix?)

Restore the solenoidal property: QB =
(

2
τMf

)−1

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, then κ(BDA) ≤ C. Moreover, the Krylov methods using

preconditioner BD preserves div B` = 0, for ` = 1, 2, · · · .

Implementation issues:

• Qp : algebraic multigrid (AMG); QE : Hiptmair-Xu (HX) preconditioner

• No need to compute M−1
f , as seen below:

vm
B =

(
τ

2
Mf

)−1 ( τ
2
Mf v

m−1
B +MfKfev

m−1
B

)
= vm−1

B +
2

τ
Kfev

m−1
B
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioners based on well-posedness (as for poroelasticity)

Block Triangular Preconditioners for ADS

Block triangular preconditioner: Riesz operator + lower/upper triangular

BL =

 2
τ
Mf 0 0

−KT
feMf

τ
2
KT

feMfKfe + 2
τ
Me + Z 0

0 −GTevMe
τ
2
GTevMvGev + 2

τ
Mv

−1

Remarks:

• Reduce cost: approximate diagonal blocks

• Keep B solenoidal: QB =
(

2
τ
Mf

)−1

• Prove robustness: replace 〈·, ·〉H by 〈·, ·〉BD

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, we have the following Field-of-Values equivalence:

γ ≤ 〈x ,BLAx〉BD
〈x , x〉BD

,
‖BLAx‖BD
‖x‖BD

≤ Γ,

which implies preconditioned GMRes converges uniformly. Moreover, PGMRes also
preserves div B` = 0 for ` = 1, 2, · · · .
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioner based on Exact Block Factorization

Block Factroziation

Matrix in the block form:

A =

 2
τ
Mf MfKfe

−KT
feMf

2
τ
Me + Z MeGev
−GTevMe

2
τ
Mv



In general, we can factorize the block matrix: A = LDU
• Schur complements in D are defined recursively and usually dense
• L and U contain the inverses of Schur complements, which usually are difficult

to compute
• Sparse and good approximations of the Schur complements are not easy to find
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioner based on Exact Block Factorization

Exact Factorization of Structure-Preserving Discretization

Structure-preserving discretization:

Continuous level Discrete level

curl grad = 0 KfeGev = 0 or GTevKT
fe = 0

(1 + γ)
∫

Γi
〈n ∧ E , n ∧ grad p〉 = 0 GTevZ = 0 or ZTGev = 0

Exact Block Factorization: A = LDU

L =

 I
− τ

2
KT

fe I
− τ

2
GTev I

 , D =

 2
τ
Mf

SE
Sp

 , U =

I τ
2
Kfe

I τ
2
Gev
I


where

SE =
τ

2
KT

feMfKfe +
2

τ
Me + Z

⇐⇒ curlµ−1 curl +I

Sp =
τ

2
GTevMvGev +

2

τ
Mv

⇐⇒ div ε grad +I

Remark: thanks to the structure-preserving discretization

• Schur complements SE and Sp are computed exactly and they are sparse
• We can find good approximations to the Schur complements
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioner based on Exact Block Factorization

Block Preconditioners based on Exact Factorization

Spectral equivalent approximation of D−1: Q = diag (QB ,QE ,Qp)

c1〈Q x , x〉 ≤ 〈D−1 x , x〉 ≤ c2〈Q x , x〉

Block Preconditioners: according to the factorization A = LDU
• Diagonal: MD = Q (≈ D−1) (this actually is BD)

• Lower triangular: ML = QL−1 (≈ (LD)−1)

• Upper triangular: MU = U−1Q (≈ (DU)−1)

• Lower/Upper triangular: MLU = U−1QL−1 (≈ (LDU)−1)

Theorem (Adler, Hu, & Z. 2016)

If Q is spectrally equivalent to D, we have

λ(MLA) ∈ [c−1
2 , c−1

1 ], λ(MUA) ∈ [c−1
2 , c−1

1 ], and λ(MLUA) ∈ [c−1
2 , c−1

1 ]

Implementation:

• L−1 =

 I
τ
2
KT

fe I
τ
2
GTev I

 , U−1 =

I − τ
2
Kfe

I − τ
2
Gev
I


• QB : Jacobi; QE : HX-preconditioner; Qp : AMG

• Keep B solenoidal: QB =
(

2
τ
Mf

)−1
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• Lower/Upper triangular: MLU = U−1QL−1 (≈ (LDU)−1)

Theorem (Adler, Hu, & Z. 2016)

If Q is spectrally equivalent to D, we have

λ(MLA) ∈ [c−1
2 , c−1

1 ], λ(MUA) ∈ [c−1
2 , c−1

1 ], and λ(MLUA) ∈ [c−1
2 , c−1

1 ]

Implementation:

• L−1 =

 I
τ
2
KT

fe I
τ
2
GTev I

 , U−1 =

I − τ
2
Kfe

I − τ
2
Gev
I


• QB : Jacobi; QE : HX-preconditioner; Qp : AMG

• Keep B solenoidal: QB =
(

2
τ
Mf

)−1
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Efficient Solvers for ADS of Maxwell’s Equation Preconditioner based on Exact Block Factorization

Relation Between Two Preconditioners

Diagonal case: two approachs are equivalent, i.e. BD =MD

Triangular case: use lower triangular as an example

B−1
L =


Q−1

B 0 0

−KT
feMf Q−1

E 0

0 −GT
evMe Q−1

p

 and M−1
L =


Q−1

B 0 0

− τ2 KT
feQ−1

B Q−1
E 0

0 − τ2 GT
evQ−1

E Q−1
p



• If Q−1
B = 2

τ
Mf and Q−1

E = SE ,

− τ
2
KT

feQ−1
B = − τ

2
KT

fe

(
2

τ
Mf

)
= −KT

feMf

− τ
2
GTevQ−1

E = − τ
2
GTevSE = − τ

2
GTev
(
τ

2
KT

feMfKfe +
2

τ
Me + Z

)
= −GTevMe

then BL =ML

• In general, BL and ML are different
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Numerical Experiments

Example

Parameters for the Maxwell’s system: ε = µ−1 = 1 and τ = 0.1
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Numerical Experiments

Performance of Preconditioners

(1) Preconditioner BD
1/8 1/16 1/32 1/64

0.2 21 26 28 28
0.1 14 22 26 27
0.05 10 16 23 25
0.025 7 10 17 23

(2) Preconditioner BL
1/8 1/16 1/32 1/64

0.2 7 8 10 10
0.1 6 7 8 9
0.05 5 6 7 8
0.025 5 5 6 7

(3) Preconditioner BU
1/8 1/16 1/32 1/64

0.2 7 8 9 10
0.1 6 7 8 9
0.05 5 6 8 8
0.025 4 5 6 8

(4) Preconditioner ML

1/8 1/16 1/32 1/64

0.2 5 6 6 8
0.1 5 7 7 7
0.05 5 5 6 7
0.025 5 5 5 6

(5) Prconditioner MU

1/8 1/16 1/32 1/64

0.2 5 7 8 8
0.1 5 6 7 8
0.05 5 6 6 7
0.025 4 5 6 6

(6) Preconditioner MLU

1/8 1/16 1/32 1/64

0.2 4 4 5 5
0.1 4 4 4 5
0.05 4 4 4 4
0.025 3 4 4 4
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Numerical Experiments

Performance of Preconditioners: jumps in ε and µ

Table: Jumps in ε: h = 1/32 and τ = 0.1

10−6 10−4 10−2 1 102 104 106

BD 28 28 27 26 27 22 16
BL 9 9 9 8 8 8 8
BU 9 9 8 8 8 8 8
ML 7 7 7 7 7 7 7
MU 7 7 7 7 6 6 6
MLU 5 4 4 4 4 4 4

Table: Jumps in µ: h = 1/32 and τ = 0.1

10−6 10−4 10−2 1 102 104 106

BD 17 22 27 26 26 26 26
BL 11 11 9 8 8 8 8
BU 10 10 9 8 8 8 8
ML 9 8 7 7 7 7 7
MU 7 7 7 7 7 7 7
MLU 5 5 5 4 4 4 5
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Numerical Experiments

Computational Complexity

Parameters: ε = µ−1 = 1 and τ = 0.1
Average CPU time (seconds) over 20 time steps

1/8 1/16 1/32 1/64

BL 0.13 1.05 12.38 165.23
BU 0.12 1.03 11.79 158.55
ML 0.12 0.96 10.72 138.83
MU 0.12 1.00 11.65 159.71
MLU 0.11 0.95 9.70 127.80
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Conclusions

Conclusions

• We presented structure-preserving and stable finite element methods for
approximate solutions to the systems of coupled PDEs (poroelasticity and
Maxwell’s system)

• We designed family of operator preconditioners based on the
well-posedness of the discrete systems (discretized Biot’s model and
Maxwell’s system)

• We have shown robustness of the preconditioners with respect to the
physical and discretization parameters

• We also presented a novel approach for the analysis for the
sequential-implicit (splitting) schemes for poroelasticity.

Software

All numerical experiments in this talk are done using the HAZMATH FE and
graph library: https://bitbucket.org/XiaozheHu/hazmath/wiki/Home
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