Operator Preconditioning: Theory, Practice, and Robustness

Ludmil Zikatanov

The Pennsylvania State University

Mathematics Days in Sofia July 10-14, 2017, Sofia, Bulgaria

Dedicated to the 70th anniversary of the Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

> Joint with: X. Hu and J. Adler (Tufts U), F. Gaspar and C. Rodrigo (U Zaragoza), J. Xu (Penn State), V. Petkov (U Bordeaux)

• What are the computers computing nowadays?

• What are the computers computing nowadays?

SEARCH& SORT +

• What are the computers computing nowadays?

SEARCH& SORT +

Solve $\mathbf{A}\mathbf{u} = \mathbf{f}$ $A \in \mathbb{R}^{N \times N}, \ n \gg 1$ +

• What are the computers computing nowadays?

+

SEARCH& SORT

• Note (folklore): Solution of linear systems Au = f takes about 90% of the CPU/GPU cycles today.

Solve Au = f

 $A \in {\rm I\!R}^{N \times N}$, $n \gg 1$

+

• What are the computers computing nowadays?

+

SEARCH& SORT

 Note (folklore): Solution of linear systems Au = f takes about 90% of the CPU/GPU cycles today.

Solve Au = f

 $A \in \mathbb{R}^{N \times N}$. $n \gg 1$

• Subject: Solution of Au = f for A corresponding to discretized partial differential equations.

+

• What are the computers computing nowadays?

SEARCH& SORT +

• Note (folklore): Solution of linear systems Au = f takes about 90% of the CPU/GPU cycles today.

Solve Au = f

 $A \in \mathbb{R}^{N \times N}$. $n \gg 1$

- Subject: Solution of Au = f for A corresponding to discretized partial differential equations.
- Areas of application: Physics, engineering, chemistry, In general: in the computer simulations of physical phenomena described by linear and nonlinear PDE.

+

• What are the computers computing nowadays?

SEARCH& SORT +

• Note (folklore): Solution of linear systems Au = f takes about 90% of the CPU/GPU cycles today.

Solve Au = f

 $A \in \mathbb{R}^{N \times N}$. $n \gg 1$

- Subject: Solution of Au = f for A corresponding to discretized partial differential equations.
- Areas of application: Physics, engineering, chemistry, In general: in the computer simulations of physical phenomena described by linear and nonlinear PDE.
- Further applications (not in this talk): Modelling of social and bio phenomena and networks (machine learning).

+

• Solving Au = f by Gaussian elimination!

- Solving Au = f by Gaussian elimination!
- Caution: COST!!! (more on this later as well).

Number of arithemetic operations = $O(N^3), N \rightarrow \infty$

- Solving Au = f by Gaussian elimination!
- Caution: COST!!! (more on this later as well).

Number of arithemetic operations = $O(N^3), N \to \infty$

• Improvement: Using that A is sparse and LU decomposition techniques:

- Solving Au = f by Gaussian elimination!
- Caution: COST!!! (more on this later as well).

Number of arithemetic operations = $O(N^3), N \to \infty$

• Improvement: Using that A is sparse and LU decomposition techniques:Number of arithemetic operations depends on the *fill-in* in the factors. (Provably) Efficient algorithms for reducing the fill-in are difficult to find.

Back to the question in hand:

How to solve Au = f efficiently?

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice
- Computationally expensive

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice
- Computationally expensive

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$egin{aligned} \mathcal{N} &= 2^{20} \ pprox 1.0 imes 10^6 \end{aligned}$	${m N}=2^{24}\ pprox 1.6 imes 10^7$	${m N}=2^{28}\ pprox 2.6 imes 10^8$	
TaihuLight				

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice
- Computationally expensive

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$N=2^{20}\ pprox 1.0 imes 10^6$	$N=2^{24}\ pprox 1.6 imes 10^7$	${f N}=2^{28}\ pprox 2.6 imes 10^8$	$N = 2^{32}$ $\approx 4.3 \times 10^9$
TaihuLight	6 s			

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice
- Computationally expensive

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$egin{aligned} \mathcal{N} &= 2^{20} \ &pprox 1.0 imes 10^6 \end{aligned}$	$egin{aligned} \mathcal{N} &= 2^{24} \ &pprox 1.6 imes 10^7 \end{aligned}$	$egin{aligned} \mathcal{N} &= 2^{28} \ &pprox 2.6 imes 10^8 \end{aligned}$	$N = 2^{32}$ $\approx 4.3 \times 10^9$
TaihuLight	6 s	7 h		

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice
- Computationally expensive

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$N = 2^{20}$	$N = 2^{24}$	$N = 2^{28}$	$N = 2^{32}$
	$pprox 1.0 imes 10^6$	$pprox 1.6 imes 10^7$	$pprox 2.6 imes 10^8$	$pprox$ 4.3 $ imes$ 10 9
TaihuLight	6 s	7 h	3.3 yrs	

Back to the question in hand:

How to solve Au = f efficiently?

Direct Method: Gaussian Elimination/LU decomposition

- Black-box, most user-friendly
- Robust, commonly used in practice
- Computationally expensive

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$N = 2^{20}$	$N = 2^{24}$	$N = 2^{28}$	$N = 2^{32}$
	$pprox 1.0 imes 10^{6}$	$pprox 1.6 imes 10^7$	$pprox$ 2.6 $ imes$ 10 8	$pprox$ 4.3 $ imes$ 10 9
TaihuLight	6 s	7 h	3.3 yrs	13690 yrs

Given initial guess \mathbf{x}^0 , $\mathbf{r}^0 := \mathbf{f} - \mathbf{A}\mathbf{x}^0$, at *m*-th iteration,

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^m(\mathsf{A},\mathsf{r}^0):=\mathsf{span}\{\mathsf{r}^0,\mathsf{Ar}^0,\ldots,\mathsf{A}^{m-1}\mathsf{r}^0\}$$

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^{m}(\mathbf{A}, \mathbf{r}^{0}) := \operatorname{span}\{\mathbf{r}^{0}, \mathbf{A}\mathbf{r}^{0}, \dots, \mathbf{A}^{m-1}\mathbf{r}^{0}\}$$
• Find $\mathbf{x}^{m} \in \mathbf{x}^{0} + \mathcal{K}^{m}(\mathbf{A}, \mathbf{r}^{0})$ by minimization, e.g.,

minimize residual: $\min_{\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m} \| \mathbf{f} - \mathbf{A} \mathbf{x}^m \|$

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^{m}(\mathbf{A}, \mathbf{r}^{0}) := \operatorname{span}\{\mathbf{r}^{0}, \mathbf{A}\mathbf{r}^{0}, \dots, \mathbf{A}^{m-1}\mathbf{r}^{0}\}$$

• Find $\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m(\mathbf{A},\mathbf{r}^0)$ by minimization, e.g.,

minimize residual: $\min_{\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m} \| \mathbf{f} - \mathbf{A} \mathbf{x}^m \|$

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^m(\mathsf{A},\mathsf{r}^0):=\mathsf{span}\{\mathsf{r}^0,\mathsf{Ar}^0,\ldots,\mathsf{A}^{m-1}\mathsf{r}^0\}$$

• Find $\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m(\mathbf{A}, \mathbf{r}^0)$ by minimization, e.g.,

minimize residual: $\min_{\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m} \| \mathbf{f} - \mathbf{A} \mathbf{x}^m \|$

Krylov Iterative Method

• Symmetric A: MINRES; general A: GMRES

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^m(\mathsf{A},\mathsf{r}^0):=\mathsf{span}\{\mathsf{r}^0,\mathsf{Ar}^0,\ldots,\mathsf{A}^{m-1}\mathsf{r}^0\}$$

• Find $\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m(\mathbf{A}, \mathbf{r}^0)$ by minimization, e.g.,

minimize residual: $\min_{\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m} \| \mathbf{f} - \mathbf{A} \mathbf{x}^m \|$

Krylov Iterative Method

- Symmetric A: MINRES; general A: GMRES
- Each iteration is cheap: computational cost is $\mathcal{O}(N^2)$ or $\mathcal{O}(N)$

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^m(\mathsf{A},\mathsf{r}^0):=\mathsf{span}\{\mathsf{r}^0,\mathsf{Ar}^0,\ldots,\mathsf{A}^{m-1}\mathsf{r}^0\}$$

• Find $\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m(\mathbf{A}, \mathbf{r}^0)$ by minimization, e.g.,

minimize residual: $\min_{\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m} \| \mathbf{f} - \mathbf{A} \mathbf{x}^m \|$

Krylov Iterative Method

- Symmetric A: MINRES; general A: GMRES
- Each iteration is cheap: computational cost is $\mathcal{O}(N^2)$ or $\mathcal{O}(N)$
- Lack of robustness: may converge very slowly

Given initial guess $\boldsymbol{x}^0,\,\boldsymbol{r}^0:=\boldsymbol{f}-\boldsymbol{A}\boldsymbol{x}^0,$ at m-th iteration,

• Construct Krylov subspace

$$\mathcal{K}^m(\mathsf{A},\mathsf{r}^0):=\mathsf{span}\{\mathsf{r}^0,\mathsf{Ar}^0,\ldots,\mathsf{A}^{m-1}\mathsf{r}^0\}$$

• Find $\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m(\mathbf{A}, \mathbf{r}^0)$ by minimization, e.g.,

minimize residual: $\min_{\mathbf{x}^m \in \mathbf{x}^0 + \mathcal{K}^m} \| \mathbf{f} - \mathbf{A} \mathbf{x}^m \|$

Krylov Iterative Method

- Symmetric A: MINRES; general A: GMRES
- Each iteration is cheap: computational cost is $\mathcal{O}(N^2)$ or $\mathcal{O}(N)$
- Lack of robustness: may converge very slowly

Convergence rate of MINRES: $\|\mathbf{x} - \mathbf{x}^m\| \le \delta \|\mathbf{x} - \mathbf{x}^{m-1}\|$ $\delta = \frac{\kappa(\mathbf{A}) - 1}{\kappa(\mathbf{A}) + 1} \to 1$ as the condition number $\kappa(\mathbf{A}) := \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \to \infty$

5 / 63

Algebraic systems arising from PDE discretizations

• Observation: Many of the existing "direct methods" (like Gaussian elimination) do not use much specific knowledge of the special structure of *A*.

Algebraic systems arising from PDE discretizations

- Observation: Many of the existing "direct methods" (like Gaussian elimination) do not use much specific knowledge of the special structure of *A*.
- Such methods can not be effectively used for systems arising from various discretization of PDEs, unless A is very simple, e.g. banded (*p*-diagonal, *p* ≪ *N*) or *N* is small.

Algebraic systems arising from PDE discretizations

- Observation: Many of the existing "direct methods" (like Gaussian elimination) do not use much specific knowledge of the special structure of *A*.
- Such methods can not be effectively used for systems arising from various discretization of PDEs, unless A is very simple, e.g. banded (p-diagonal, p ≪ N) or N is small.
- A "good" method should use the knowledge of some PDE properties:
 - Symmetry, smoothnes of the solution, types of singularities.
 - Geometric properties of the physical domains.
 - Special properties of the discretization methods.

Numerical models and available fast solvers

PDE model \implies numerical models:

- Hilbert space ${\cal H}$ equipped with inner product $(\cdot,\cdot)_{{\cal H}}$ and norm $\|\cdot\|_{{\cal H}}$
- Operator $\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$ and PDE: Au = f.
- Example: A = −Δ : H¹₀ → H⁻¹ (Laplacian) on a bounded smooth domain with appropriate boundary conditions.
- Numerical model: restricting these equations to finite dimensional space $\mathcal{V}, \mathcal{V}'$ which "approximate" \mathcal{H} and \mathcal{H}' .

Linear system: given $f \in \mathcal{V}'$, find $u \in \mathcal{V}$ such that Au = f

Numerical models and available fast solvers

PDE model \implies numerical models:

- Hilbert space ${\cal H}$ equipped with inner product $(\cdot,\cdot)_{{\cal H}}$ and norm $\|\cdot\|_{{\cal H}}$
- Operator $\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$ and PDE: Au = f.
- Example: A = −Δ : H¹₀ → H⁻¹ (Laplacian) on a bounded smooth domain with appropriate boundary conditions.
- Numerical model: restricting these equations to finite dimensional space $\mathcal{V}, \mathcal{V}'$ which "approximate" \mathcal{H} and \mathcal{H}' .

Linear system: given $f \in \mathcal{V}'$, find $u \in \mathcal{V}$ such that Au = f

Fast solvers (currently available):

- Advances in the recent years for $A = d^*Kd$, where $d = \{$ grad or curl or div.
- AMG for *d* = grad: Brandt, McCormick, Ruge 1983 (original); Vassilevski 2008 (monograph); Xu & Z. (Acta Numerica, May 2017).
- HX (Hiptmair & Xu 2007) preconditioners for d = curl, or d = div.

Setup:

- Hilbert space ${\cal H}$ equipped with inner product $(\cdot,\cdot)_{{\cal H}}$ and norm $\|\cdot\|_{{\cal H}}$
- Operator $\boldsymbol{A}:\mathcal{H}\mapsto\mathcal{H}'$

Linear problem: given $f\in \mathcal{H}',$ find $u\in \mathcal{H}$ such that Au=f

Setup:

- Hilbert space \mathcal{H} equipped with inner product $(\cdot, \cdot)_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$
- Operator $\boldsymbol{A}:\mathcal{H}\mapsto\mathcal{H}'$

Linear problem: given $f\in \mathcal{H}',$ find $u\in \mathcal{H}$ such that Au=f

Well-posedness (is **A** an isomorphism?):

 $\begin{array}{rl} \text{Continuity of } \mathbf{A} \colon & \sup_{\mathbf{0} \neq \mathbf{x} \in \mathcal{H}} \sup_{\mathbf{0} \neq \mathbf{y} \in \mathcal{H}} \sup_{\mathbf{0} \neq \mathbf{y} \in \mathcal{H}} \frac{\langle \mathbf{A} \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \text{Continuity of } \mathbf{A}^{-1} \text{ (inf-sup condition): } & \inf_{\mathbf{0} \neq \mathbf{x} \in \mathcal{H}} \sup_{\mathbf{0} \neq \mathbf{y} \in \mathcal{H}} \frac{\langle \mathbf{A} \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma > 0 \end{array}$

Setup:

- Hilbert space \mathcal{H} equipped with inner product $(\cdot, \cdot)_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$
- Operator $\boldsymbol{A}:\mathcal{H}\mapsto\mathcal{H}'$

Linear problem: given $f\in \mathcal{H}',$ find $u\in \mathcal{H}$ such that Au=f

Well-posedness (is **A** an isomorphism?):

/ A \

Example: Stokes equation $\begin{aligned} \mathbf{A}\mathbf{x} = \mathbf{f} \implies \begin{pmatrix} -\Delta & \text{div}^* \\ \text{div} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \end{pmatrix} \end{aligned}$ where $\mathcal{H} = [H_0^1]^3 \times L^2$, and $\|\mathbf{x}\|_{\mathcal{H}}^2 := \|\nabla \mathbf{u}\|^2 + \|p\|^2$

8 / 63
Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

L. Zikatanov (Penn State)

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ $\mathbf{B} \approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ **B** $\approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

- Apply Krylov iterative methods to the preconditioned system
- An example: multigrid preconditioner for $A = -\Delta$:

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ **B** $\approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

- Apply Krylov iterative methods to the preconditioned system
- An example: multigrid preconditioner for $A = -\Delta$:

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$egin{array}{c} {\sf N}=2^{20}\ pprox1.0 imes10^6 \end{array}$	$egin{aligned} \mathcal{N} &= 2^{24} \ &pprox 1.6 imes 10^7 \end{aligned}$	$N=2^{28} pprox 2.6 imes 10^8$	$N = 2^{32}$ $\approx 4.3 \times 10^9$
TaihuLight	6 s	7 h	3.3 yrs	13690 yrs
Laptop (MG)				

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ **B** $\approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

- Apply Krylov iterative methods to the preconditioned system
- An example: multigrid preconditioner for $A = -\Delta$:

Comparison (the timing in blue is an extrapolation):

$\mathbf{A} \in \mathbb{R}^{N \times N}$	$N=2^{20}\ pprox 1.0 imes 10^6$	$N=2^{24}\ pprox 1.6 imes 10^7$	$N=2^{28}\ pprox 2.6 imes 10^8$	$N = 2^{32}$ $\approx 4.3 \times 10^9$
TaihuLight	6 s	7 h	3.3 yrs	13690 yrs
Laptop (MG)	0.3 s			

9 / 63

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ **B** $\approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

- Apply Krylov iterative methods to the preconditioned system
- An example: multigrid preconditioner for $A = -\Delta$:

$\mathbf{A} \in \mathbb{R}^{N \times N}$	$N=2^{20}\ pprox 1.0 imes 10^6$	$N=2^{24}\ pprox 1.6 imes 10^7$	$N=2^{28}\ pprox 2.6 imes 10^8$	
TaihuLight	б s	7 h	3.3 yrs	13690 yrs
Laptop (MG)	0.3 s	4.6 s		

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ **B** $\approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

- Apply Krylov iterative methods to the preconditioned system
- An example: multigrid preconditioner for $A = -\Delta$:

$\mathbf{A} \in \mathbb{R}^{N \times N}$	$N=2^{20}\ pprox 1.0 imes 10^6$	$N=2^{24}\ pprox 1.6 imes 10^7$	$N=2^{28}\ pprox 2.6 imes 10^8$	$N = 2^{32}$ $\approx 4.3 \times 10^9$
TaihuLight	б s	7 h	3.3 yrs	13690 yrs
Laptop (MG)	0.3 s	4.6 s	63.5 s	

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ **B** $\approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

- Apply Krylov iterative methods to the preconditioned system
- An example: multigrid preconditioner for $A = -\Delta$:

$\mathbf{A} \in \mathbb{R}^{N imes N}$	$egin{aligned} \mathcal{N} &= 2^{20} \ pprox 1.0 imes 10^6 \end{aligned}$	$N=2^{24}\ pprox 1.6 imes 10^7$	$egin{aligned} \mathcal{N} &= 2^{28} \ pprox 2.6 imes 10^8 \end{aligned}$	$N = 2^{32}$ $\approx 4.3 \times 10^9$
TaihuLight	6 s	7 h	3.3 yrs	13690 yrs
Laptop (MG)	0.3 s	4.6 s	63.5 s	1015 s

Operator Preconditioning (Loghin & Wathen 2004, Mardal & Winther 2011)

Problem: Given $f \in \mathcal{H}'$, find $u \in \mathcal{H}$ such that Au = f. Here, $A : \mathcal{H} \mapsto \mathcal{H}'$ is an isomorphism.

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

$$\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$$

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

$$\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$$

Estimate κ (**BA**):

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

$$\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$$

Estimate κ (**BA**):

$$\|\mathbf{B}\mathbf{A}\| = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \le \beta$$

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

$$\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$$

Estimate κ (**BA**):

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|\mathbf{B}\mathbf{A}^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \end{split}$$

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

$$\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$$

Estimate κ (**BA**):

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|\mathbf{B}\mathbf{A}^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|\mathbf{B}\mathbf{A}^{-1}\| \leq \frac{\beta}{\gamma} \end{split}$$

10 / 63

(Penn State)

Riesz operator: $\mathbf{B}:\mathcal{H}'\mapsto\mathcal{H}$, such that for every $\mathbf{f}\in\mathcal{H}'$,

$$\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$$

Estimate κ (**BA**):

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|\mathbf{B}\mathbf{A}^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|\mathbf{B}\mathbf{A}^{-1}\| \leq \frac{\beta}{\gamma} \end{split}$$

Riesz operator is a robust preconditioner!

The operator preconditioners presented here:

- Provably robust w.r.t different parameters.
- Motivated by the well-posedness of the discrete problems (Loghin & Wathen 2004, Mardal & Winther 2004, 2011, Zulehner 2011, Pestana & Wathen 2015)

Our focus (two examples)

- PDEs modeling soil consolidation (Biot's model in poroelasticity)
- Asymptotically disappearing solutions (ADS) of Maxwell's equations (Petkov et al. 2011,...; Cakoni et al. 2016).

- This problem was firstly studied by Terzaghi in 1925. (*Terzaghi, Erdbaumechanik and Bodenphysikalischen Grundlagen. Deuticke, Leipzig, 1925*).
- The general three-dimensional theory was given by Biot in 1941. (*Biot M., General theory of three dimensional consolidation. J. Appl. Phys.* 12 (1941), 155-169.)
- The term *poroelasticity* was firstly coined by J. Geertsma in 1966. (*Geertsma J., Problems of rocks mechanics in petroleum production engineering, 1966*).
- Biot's models are used to study problems in geomechanics, hydrogeology, petrol engineering, biomechanics, etc.

Two-field (displacement-pressure) formulation:

$$-\operatorname{div} \boldsymbol{\sigma} + \alpha \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \boldsymbol{\sigma} = 2\mu\varepsilon(\boldsymbol{u}) + \lambda\operatorname{div}(\boldsymbol{u})\boldsymbol{I} \qquad \text{(Linear Elasiticy)}$$

$$-\alpha\operatorname{div} \partial_{\boldsymbol{f}} \boldsymbol{u} + \operatorname{div} K \nabla \boldsymbol{p} = \boldsymbol{g} \qquad \text{(Darcy's Law})$$

σ: effective stress; ε: effective strain; λ and μ: Lamé coefficients; K: hydraulic conductivity; α: Biot-Willis constant.

Terzaghi 1925, Biot 1941, Geertsma 1966

Two-field (displacement-pressure) formulation:

$$-\operatorname{div} \boldsymbol{\sigma} + \alpha \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \boldsymbol{\sigma} = 2\mu\varepsilon(\boldsymbol{u}) + \lambda\operatorname{div}(\boldsymbol{u})\boldsymbol{I}$$
 (Linear Elasiticy)
 $-\alpha\operatorname{div} \partial_t \boldsymbol{u} + \operatorname{div} K \nabla \boldsymbol{p} = \boldsymbol{g}$ (Darcy's Law)

$$\begin{array}{ll} \text{Three-field (displacement-velocity-pressure) formulation:} \\ & -\operatorname{div} \boldsymbol{\sigma} + \alpha \nabla \boldsymbol{p} = \boldsymbol{f}, \quad \boldsymbol{\sigma} = 2\mu \varepsilon(\boldsymbol{u}) + \lambda \operatorname{div}(\boldsymbol{u})\boldsymbol{I} & \text{(Linear Elasiticy)} \\ & -\alpha \operatorname{div} \partial_t \boldsymbol{u} - \operatorname{div} \boldsymbol{w} = \boldsymbol{g} & \text{(Continuity)} \\ & \boldsymbol{w} + K \nabla \boldsymbol{p} = \boldsymbol{0} & \text{(Darcy's Law)} \end{array}$$

σ: effective stress; ε: effective strain; λ and μ: Lamé coefficients; K: hydraulic conductivity; α: Biot-Willis constant.

Terzaghi 1925, Biot 1941, Geertsma 1966

Maxwell's system: Let \mathcal{O} be a bounded and connected domain, we consider the Maxwell's equation in the exterior of $\overline{\mathcal{O}}$, i.e. $\Omega = \mathbb{R}^3 \setminus \overline{\mathcal{O}}$

$oldsymbol{B}_t+{ t curl}~oldsymbol{E}$	=	0	[Faraday's Law]
$arepsilon oldsymbol{\mathcal{L}}_t - \operatorname{curl} \mu^{-1} oldsymbol{\mathcal{B}}$	=	-j	[Ampere's Law]
div $\varepsilon {m E}$	=	ρ	[Gauß's law]
div B	=	0	[Solenoidal constraint]

arepsilon - permitivity of the medium; μ - magnetic permeability

Maxwell's system: Let \mathcal{O} be a bounded and connected domain, we consider the Maxwell's equation in the exterior of $\overline{\mathcal{O}}$, i.e. $\Omega = \mathbb{R}^3 \setminus \overline{\mathcal{O}}$

$oldsymbol{B}_t+{ t curl}~oldsymbol{E}$	=	0	[Faraday's Law]
$\varepsilon \boldsymbol{E}_t - \operatorname{curl} \mu^{-1} \boldsymbol{B}$	=	-j	[Ampere's Law]
div $\varepsilon \boldsymbol{E}$	=	ρ	[Gauß's law]
div B	=	0	[Solenoidal constraint]

arepsilon - permitivity of the medium; μ - magnetic permeability

Remark: computationally, we use $\Omega = S \setminus \overline{O}$ where S is a ball in \mathbb{R}^3 with sufficiently large radius. We also impose impedance boundary condition on the boundary of O:

$$(1+\gamma) m{\textit{E}}_{ ext{tan}} = -m{\textit{n}} imes m{\textit{B}}_{ ext{tan}}$$

After discretization: Au = f

Poroelasiticy:
$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \operatorname{grad} \\ -\alpha \operatorname{div} & -\tau \operatorname{div} \mathcal{K} \operatorname{grad} \end{pmatrix}$$
 or $\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \operatorname{grad} & 0 \\ -\alpha \operatorname{div} & 0 & -\tau \operatorname{div} \\ 0 & \tau \operatorname{grad} & \tau \mathcal{I}_{\boldsymbol{w}} \end{pmatrix}$
Maxwell's: $\mathbf{A} = \begin{pmatrix} 2\mathcal{I}_{\boldsymbol{B}} & \tau \operatorname{curl} \\ -\tau \operatorname{curl} & 2\mathcal{I}_{\boldsymbol{E}} + \tau \mathcal{Z} & \operatorname{grad} \\ & \tau \operatorname{div} & 2\mathcal{I}_{\boldsymbol{p}} \end{pmatrix}$

• impedance bc $\rightarrow \mathcal{Z}$; div $\mathbf{E} = \rho \rightarrow$ Lagrange multiplier p

After discretization: Au = f

Poroelasiticy:
$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \operatorname{grad} \\ -\alpha \operatorname{div} & -\tau \operatorname{div} \mathcal{K} \operatorname{grad} \end{pmatrix}$$
 or $\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \operatorname{grad} & 0 \\ -\alpha \operatorname{div} & 0 & -\tau \operatorname{div} \\ 0 & \tau \operatorname{grad} & \tau \mathcal{I}_{\boldsymbol{w}} \end{pmatrix}$
Maxwell's: $\mathbf{A} = \begin{pmatrix} 2\mathcal{I}_{\boldsymbol{B}} & \tau \operatorname{curl} \\ -\tau \operatorname{curl} & 2\mathcal{I}_{\boldsymbol{E}} + \tau \mathcal{Z} & \operatorname{grad} \\ & \tau \operatorname{div} & 2\mathcal{I}_{\boldsymbol{p}} \end{pmatrix}$

• impedance bc $\rightarrow \mathcal{Z}$; div $\mathbf{E} = \rho \rightarrow$ Lagrange multiplier p

Properties of the linear systems:

- Large, indefinite, and with strong coupling: Difficult to solve for either direct methods or traditional iterative methods
- Many physical parameters (λ, μ, Κ, α, μ, ε) and discretization parameters (h, τ): Challenging to design linear solvers that are robust with respect to the parameters

An incomplete literature review

Discretizations and Preconditioners for Poroelasticity:

- Well posedness and convergence Murad, Loula, Thomée 94–96
- ILU (Gambolati, Pini, & Ferronato 2003)
- Domain decomposition methods (Girault, Pencheva, Wheeler, & Wildey 2011; Florez, Wheeler, & Rodriguez 2013)
- Multigrid methods (Gaspar, Lisbona, & Rodrigo 2009)
- Approximate block factorization (Vassilevski, Lazarov 1996; Vassilevski 2008, Janna, Ferronato, & Gambolati 2009, White, Castelletto, & Tchelepi 2016, Castelletto, White, & Ferronato 2016)
- Parameter-robust preconditioning (Axelsson, Padiy 1999, Vassilevski 2008, Axelsson, Blaheta, Neytcheva 2016; Lee, Mardal, & Winther 2015; Baerland, Lee, Mardal& Winther 2017; Hong & Kraus 2017)

Preconditioners for the full Maxwell's system (used also in Magnetohydrodynamics (MHD) simulations):

- ILU (Tóth, Keppens, & Botchev 1998, 1999; Badia, Martin, & Planas 2014)
- Domain decomposition methods (Ovtchinikov, Dobrain, Cai, & Keyes 2007; Reynolds, Samtaney, & Tiedeman, 2012)
- Multigrid methods (Shadid, Pawlovski, Banks, Chacón, Lin, & Tuminaro 2010; Benson, Adler, Cyr, MacLachlan, & Tuminaro, 2015)
- Approximate block factorization (Shadid, Cyr, Pawlovski, Tuminaro, Chacón, & Lin, 2010; Cyr, Shadid, Tuminaro, Pawlowski, & Chacón 2013; Phillips, Elman, Cyr, Shadid, & Pawlowski 2014)

Preconditioner $\mathbf{M} : \mathcal{H}' \mapsto \mathcal{H}$ is symmetric positive definite ($\mathbf{MA} : \mathcal{H} \mapsto \mathcal{H}$)

Preconditioner $M : \mathcal{H}' \mapsto \mathcal{H}$ is symmetric positive definite (MA : $\mathcal{H} \mapsto \mathcal{H}$)

Norm-equivalence If **A** is well-posed w.r.t the norm $\|\cdot\|_{\mathcal{H}}$. Choose **M** such that $c_1 \|\mathbf{x}\|_{\mathcal{H}}^2 \leq \|\mathbf{x}\|_{M^{-1}}^2 \leq c_2 \|\mathbf{x}\|_{\mathcal{H}}^2$ then **M** and **A** are norm-equivalent and $\kappa(\mathbf{MA}) \leq \frac{c_2\beta}{G\gamma}$

Preconditioner $M : \mathcal{H}' \mapsto \mathcal{H}$ is symmetric positive definite (MA : $\mathcal{H} \mapsto \mathcal{H}$)

Norm-equivalence

If **A** is well-posed w.r.t the norm $\|\cdot\|_{\mathcal{H}}$. Choose **M** such that $c_1 \|\mathbf{x}\|_{\mathcal{H}}^2 \leq \|\mathbf{x}\|_{M^{-1}}^2 \leq c_2 \|\mathbf{x}\|_{\mathcal{H}}^2$ then **M** and **A** are norm-equivalent and $\kappa(\mathbf{MA}) \leq \frac{c_2\beta}{G_1\gamma}$

Theorem (Preconditioned MINRES)

The following estimate holds:

$$\|oldsymbol{A}(\mathbf{x}-\mathbf{x}^m)\|_{oldsymbol{M}}\leq 2\delta^m\|oldsymbol{A}(\mathbf{x}-\mathbf{x}^0)\|_{oldsymbol{M}},\quad \delta=rac{\kappa(\mathbf{MA})-1}{\kappa(\mathbf{MA})+1}$$

N

L. Zikatanov	(Penn State)	Operator Precor

Preconditioner $M : \mathcal{H}' \mapsto \mathcal{H}$ is symmetric positive definite (MA : $\mathcal{H} \mapsto \mathcal{H}$)

Norm-equivalence

If **A** is well-posed w.r.t the norm $\|\cdot\|_{\mathcal{H}}$. Choose **M** such that $c_1 \|\mathbf{x}\|_{\mathcal{H}}^2 \leq \|\mathbf{x}\|_{M^{-1}}^2 \leq c_2 \|\mathbf{x}\|_{\mathcal{H}}^2$ then **M** and **A** are norm-equivalent and $\kappa(\mathbf{MA}) \leq \frac{c_2\beta}{G_1\gamma}$

Theorem (Preconditioned MINRES)

The following estimate holds:

$$\|\mathbf{A}(\mathbf{x}-\mathbf{x}^m)\|_{m{M}}\leq 2\delta^m\|\mathbf{A}(\mathbf{x}-\mathbf{x}^0)\|_{m{M}}, \quad \delta=rac{\kappa(\mathbf{MA})-1}{\kappa(\mathbf{MA})+1}$$

Question: How do we choose M?

L. Zikatanov	(Penn State)	Operator Preconditioning	July 19, 2017
--------------	--------------	--------------------------	---------------

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Riesz operator :
$$\mathbf{B} = \begin{pmatrix} -\Delta & 0 \\ 0 & \mathcal{I}_p \end{pmatrix}^{-1} = \begin{pmatrix} (-\Delta)^{-1} & 0 \\ 0 & (\mathcal{I}_p)^{-1} \end{pmatrix}$$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$ Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Riesz operator :
$$\mathbf{B} = \begin{pmatrix} -\Delta & 0 \\ 0 & \mathcal{I}_{\rho} \end{pmatrix}^{-1} = \begin{pmatrix} (-\Delta)^{-1} & 0 \\ 0 & (\mathcal{I}_{\rho})^{-1} \end{pmatrix}$$

Then $c_1 = c_2 = 1$ and $\kappa(\mathsf{BA}) \leq {}^{eta}/{}_{\gamma}$

18 / 63

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$ Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Riesz operator :
$$\mathbf{B} = \begin{pmatrix} -\Delta & 0 \\ 0 & \mathcal{I}_{\rho} \end{pmatrix}^{-1} = \begin{pmatrix} (-\Delta)^{-1} & 0 \\ 0 & (\mathcal{I}_{\rho})^{-1} \end{pmatrix}$$

Then $c_1 = c_2 = 1$ and $\kappa(\mathsf{BA}) \leq {}^{eta}/{}_{\gamma}$

• Inexact block diagonal preconditioner: "cheap" but "good" blocks

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$ Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Riesz operator :
$$\mathbf{B} = \begin{pmatrix} -\Delta & 0 \\ 0 & \mathcal{I}_{\rho} \end{pmatrix}^{-1} = \begin{pmatrix} (-\Delta)^{-1} & 0 \\ 0 & (\mathcal{I}_{\rho})^{-1} \end{pmatrix}$$

Then $c_1 = c_2 = 1$ and $\kappa(\mathsf{BA}) \leq {}^{eta}\!/{}_{\gamma}$

• Inexact block diagonal preconditioner: "cheap" but "good" blocks

$$\mathbf{M} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}} & \mathbf{0} \\ \mathbf{0} & \mathcal{Q}_{\boldsymbol{p}} \end{pmatrix}$$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$ Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Riesz operator :
$$\mathbf{B} = \begin{pmatrix} -\Delta & 0 \\ 0 & \mathcal{I}_{\rho} \end{pmatrix}^{-1} = \begin{pmatrix} (-\Delta)^{-1} & 0 \\ 0 & (\mathcal{I}_{\rho})^{-1} \end{pmatrix}$$

Then $c_1 = c_2 = 1$ and $\kappa(\mathsf{BA}) \leq {}^{eta}\!/{}_{\gamma}$

• Inexact block diagonal preconditioner: "cheap" but "good" blocks

$$\mathbf{M} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}} & \boldsymbol{0} \\ \boldsymbol{0} & \mathcal{Q}_{\boldsymbol{p}} \end{pmatrix}$$

Spectral equivalent Q_u and Q_p :

 Q_u : DD/MG method Q_p : Jacobi method

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$ Norm-equivalent preconditioners:

• Block diagonal preconditioner: $\|\mathbf{x}\|_{\mathcal{H}}^2 = \langle \mathbf{B}^{-1}\mathbf{x}, \mathbf{x} \rangle$

Riesz operator :
$$\mathbf{B} = \begin{pmatrix} -\Delta & 0 \\ 0 & \mathcal{I}_{\rho} \end{pmatrix}^{-1} = \begin{pmatrix} (-\Delta)^{-1} & 0 \\ 0 & (\mathcal{I}_{\rho})^{-1} \end{pmatrix}$$

Then $c_1 = c_2 = 1$ and $\kappa(\mathsf{BA}) \leq {}^{eta}\!/{}_{\gamma}$

Inexact block diagonal preconditioner: "cheap" but "good" blocks

$$\mathbf{M} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}} & \boldsymbol{0} \\ \boldsymbol{0} & \mathcal{Q}_{\boldsymbol{p}} \end{pmatrix}$$

Spectral equivalent Q_u and Q_p :

 Q_{u} : DD/MG method Q_{p} : Jacobi method

Then $\kappa(MA) \leq c_2\beta/c_1\gamma$

Preconditioner $\mathbf{M}_L : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(\mathbf{M}_L \mathbf{A} : \mathcal{H} \mapsto \mathcal{H})$

Loghin & Wathen 2004

L. Zikatanov (Per	nn State
-------------------	----------

Preconditioner $\mathbf{M}_L : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(\mathbf{M}_L \mathbf{A} : \mathcal{H} \mapsto \mathcal{H})$

Loghin & Wathen 2004

L. Zikatanov (Penn

Preconditioner $M_L : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(M_L A : \mathcal{H} \mapsto \mathcal{H})$

Field-of-Values equivalence The operators \mathbf{M}_{L} and \mathbf{A} are FoV-equivalent, if for any $\mathbf{x} \in \mathcal{H}$, $\sigma \leq \frac{(\mathbf{M}_{L}\mathbf{A}\mathbf{x}, \mathbf{x})_{\mathcal{H}}}{(\mathbf{x}, \mathbf{x})_{\mathcal{H}}}, \quad \frac{\|\mathbf{M}_{L}\mathbf{A}\mathbf{x}\|_{\mathcal{H}}}{\|\mathbf{x}\|_{\mathcal{H}}} \leq \Upsilon.$

Theorem (Convergence of preconditioned GMRES)

If \mathbf{x}^m is the m-th iteration of GMRES method and \mathbf{x} is the exact solution,

$$\frac{\|\mathbf{M}_{L}\mathbf{A}(\mathbf{x}-\mathbf{x}^{m})\|_{\mathcal{H}}}{\|\mathbf{M}_{L}\mathbf{A}(\mathbf{x}-\mathbf{x}^{0})\|_{\mathcal{H}}} \leq \left(1-\frac{\sigma^{2}}{\Upsilon^{2}}\right)^{m/2}$$

_	
0.0	

Loghin & Wathen 2004

L. Zikatanov (Penn State) Operator Preconditioning	
--	--

July 19, 2017

Preconditioner $M_L : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(M_L A : \mathcal{H} \mapsto \mathcal{H})$

Field-of-Values equivalence
The operators
$$\mathbf{M}_{L}$$
 and \mathbf{A} are FoV-equivalent, if for any $\mathbf{x} \in \mathcal{H}$,
$$\sigma \leq \frac{(\mathbf{M}_{L}\mathbf{A}\mathbf{x}, \mathbf{x})_{\mathcal{H}}}{(\mathbf{x}, \mathbf{x})_{\mathcal{H}}}, \quad \frac{\|\mathbf{M}_{L}\mathbf{A}\mathbf{x}\|_{\mathcal{H}}}{\|\mathbf{x}_{L}\|_{\mathcal{H}}} \leq \Upsilon.$$

 $(\mathbf{x}, \mathbf{x})_{\mathcal{H}}$

Theorem (Convergence of preconditioned GMRES)

If \mathbf{x}^m is the m-th iteration of GMRES method and \mathbf{x} is the exact solution,

$$\frac{\|\mathsf{M}_{L}\mathsf{A}(\mathsf{x}-\mathsf{x}^{m})\|_{\mathcal{H}}}{\|\mathsf{M}_{L}\mathsf{A}(\mathsf{x}-\mathsf{x}^{0})\|_{\mathcal{H}}} \leq \left(1-\frac{\sigma^{2}}{\Upsilon^{2}}\right)^{m/2}$$

 $\|\mathbf{x}\|_{\mathcal{H}}$

Question: How do we choose M_L ?

Loghin & Wathen 2004

L. Zikatanov (Penn :

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

FoV-equivalent preconditioners:

• Lower triangular preconditioner: Riesz operator

$$\mathbf{B}_{L} = \begin{pmatrix} -\Delta & \\ & \mathcal{I}_{p} \end{pmatrix}^{-1}$$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

FoV-equivalent preconditioners:

• Lower triangular preconditioner: Riesz operator + lower triangular

$$\mathbf{B}_{L} = \begin{pmatrix} -\Delta & 0\\ \operatorname{div} & \mathcal{I}_{p} \end{pmatrix}^{-1}$$

then \mathbf{B}_L and \mathbf{A} are FoV-equivalent with $\sigma = \sigma(\gamma)$ and $\Upsilon = \Upsilon(\beta)$

20 / 63

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

FoV-equivalent preconditioners:

• Lower triangular preconditioner: Riesz operator + lower triangular

$$\mathbf{B}_{L} = \begin{pmatrix} -\Delta & 0\\ \operatorname{div} & \mathcal{I}_{p} \end{pmatrix}^{-1}$$

then \mathbf{B}_L and \mathbf{A} are FoV-equivalent with $\sigma = \sigma(\gamma)$ and $\Upsilon = \Upsilon(\beta)$

• Inexact lower triangular preconditioner: "cheap" but "good" blocks

$$\mathbf{M}_{L} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \mathbf{0} \\ \operatorname{div} & \mathcal{Q}_{p}^{-1} \end{pmatrix}^{-1}$$

Well-posedness: well-posed w.r.t the norm $\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\nabla \boldsymbol{u}\|^2 + \|\boldsymbol{p}\|^2$

FoV-equivalent preconditioners:

• Lower triangular preconditioner: Riesz operator + lower triangular

$$\mathbf{B}_{L} = \begin{pmatrix} -\Delta & 0\\ \operatorname{div} & \mathcal{I}_{p} \end{pmatrix}^{-1}$$

then \mathbf{B}_L and \mathbf{A} are FoV-equivalent with $\sigma = \sigma(\gamma)$ and $\Upsilon = \Upsilon(\beta)$

• Inexact lower triangular preconditioner: "cheap" but "good" blocks

$$\mathbf{M}_{L} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \mathbf{0} \\ \operatorname{div} & \boldsymbol{\rho} \mathcal{Q}_{\boldsymbol{\rho}}^{-1} \end{pmatrix}^{-1}$$

- Theory requires a parameter $ho >
 ho_0$ (Loghin & Wathen 2004)
- In practice, $\rho = 1$

20 / 63

Remove ρ

Idea: use $\|\cdot\|_{M^{-1}}$ induced by $M = \text{diag}(\mathcal{Q}_u, \mathcal{Q}_p)$ instead of $\|\cdot\|_{\mathcal{H}}$

Remove ρ

Idea: use $\|\cdot\|_{M^{-1}}$ induced by $M = \text{diag}(\mathcal{Q}_u, \mathcal{Q}_p)$ instead of $\|\cdot\|_{\mathcal{H}}$

Theorem (Ma, Hu, Hu, & Xu 2016)

If the linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}},$ then

$$\mathbf{M}_L = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \mathbf{0} \\ \operatorname{div} & \mathcal{Q}_{\boldsymbol{p}}^{-1} \end{pmatrix}^{-1}$$

and A are FoV-equivalent, i.e.,

$$\sigma \leq \frac{(\mathbf{x}, \mathbf{M}_L \mathbf{A} \mathbf{x})_{\mathbf{M}^{-1}}}{(\mathbf{x}, \mathbf{x})_{\mathbf{M}^{-1}}}, \quad \frac{\|\mathbf{M}_L \mathbf{A} \mathbf{x}\|_{\mathbf{M}^{-1}}}{\|\mathbf{x}\|_{\mathbf{M}^{-1}}} \leq \Upsilon.$$

provided $\|\mathcal{I}_{\boldsymbol{u}} - \mathcal{Q}_{\boldsymbol{u}}\mathcal{A}\|_{\mathcal{A}} \leq \delta < 1.$

Remove ρ

Idea: use $\|\cdot\|_{M^{-1}}$ induced by $M = \text{diag}(\mathcal{Q}_u, \mathcal{Q}_p)$ instead of $\|\cdot\|_{\mathcal{H}}$

Theorem (Ma, Hu, Hu, & Xu 2016)

If the linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}},$ then

$$\mathbf{M}_L = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \mathbf{0} \\ \operatorname{div} & \mathcal{Q}_{\boldsymbol{p}}^{-1} \end{pmatrix}^{-1}$$

and A are FoV-equivalent, i.e.,

$$\sigma \leq \frac{(\mathbf{x}, \mathbf{M}_L \mathbf{A} \mathbf{x})_{\mathbf{M}^{-1}}}{(\mathbf{x}, \mathbf{x})_{\mathbf{M}^{-1}}}, \quad \frac{\|\mathbf{M}_L \mathbf{A} \mathbf{x}\|_{\mathbf{M}^{-1}}}{\|\mathbf{x}\|_{\mathbf{M}^{-1}}} \leq \Upsilon.$$

provided $\|\mathcal{I}_{\boldsymbol{u}} - \mathcal{Q}_{\boldsymbol{u}}\mathcal{A}\|_{\mathcal{A}} \leq \delta < 1.$

- Q_u needs to be convergent
- σ and Υ only depend on $\beta,\,\gamma,\,\delta,$ and the quality of spectral equivalent approximations
- Preconditioned GMRES converges uniformly

Right Preconditioning

Preconditioner $\mathbf{M}_U : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(\mathbf{AM}_U : \mathcal{H}' \mapsto \mathcal{H}')$

$$\mathbf{A}\mathbf{x} = \mathbf{f} \Longrightarrow \mathbf{A}\mathbf{M}_U \mathbf{x}' = \mathbf{f}, \quad \mathbf{x}' = \mathbf{M}_U^{-1} \mathbf{x} \in \mathcal{H}'$$

Right Preconditioning

Preconditioner $\mathbf{M}_U : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(\mathbf{AM}_U : \mathcal{H}' \mapsto \mathcal{H}')$

$$Ax = f \Longrightarrow AM_U x' = f, \quad x' = M_U^{-1} x \in \mathcal{H}'$$

Field-of-Values equivalence

The operators $\textbf{M}_{\textit{U}}$ and A are FoV-equivalent, if for any $\textbf{x}' \in \mathcal{H}',$

$$\sigma \leq \frac{(\mathbf{A}\mathbf{M}_U\mathbf{x}',\mathbf{x}')_{\mathbf{M}}}{(\mathbf{x}',\mathbf{x}')_{\mathbf{M}}}, \quad \frac{\|\mathbf{A}\mathbf{M}_U\mathbf{x}'\|_{\mathbf{M}}}{\|\mathbf{x}'\|_{\mathbf{M}}} \leq \Upsilon.$$

Right Preconditioning

Preconditioner $M_U : \mathcal{H}' \mapsto \mathcal{H}$ is a general operator $(AM_U : \mathcal{H}' \mapsto \mathcal{H}')$

$$A\mathbf{x} = \mathbf{f} \Longrightarrow AM_U \mathbf{x}' = \mathbf{f}, \quad \mathbf{x}' = M_U^{-1} \mathbf{x} \in \mathcal{H}'$$

Field-of-Values equivalence

The operators $\textbf{M}_{\textit{U}}$ and A are FoV-equivalent, if for any $\textbf{x}' \in \mathcal{H}',$

$$\sigma \leq \frac{(\mathbf{A}\mathbf{M}_U\mathbf{x}',\mathbf{x}')_{\mathbf{M}}}{(\mathbf{x}',\mathbf{x}')_{\mathbf{M}}}, \quad \frac{\|\mathbf{A}\mathbf{M}_U\mathbf{x}'\|_{\mathbf{M}}}{\|\mathbf{x}'\|_{\mathbf{M}}} \leq \Upsilon.$$

Example: Stokes equation

• Upper triangular preconditioner: Riesz operator + upper triangular

$$\mathbf{B}_U = egin{pmatrix} -\Delta & \operatorname{div}^* \ 0 & \mathcal{I}_p \end{pmatrix}^{-1}$$

• Inexact upper triangular preconditioner:

$$\mathbf{M}_{U} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \operatorname{div}^{*} \\ \mathbf{0} & \mathcal{Q}_{\rho}^{-1} \end{pmatrix}^{-1}$$

where $\|\mathcal{I}_{\boldsymbol{u}} - \mathcal{Q}_{\boldsymbol{u}}\mathcal{A}\|_{\mathcal{A}} \leq \delta < 1.$

Poroelasticity: Numerical Difficulties

Terzaghi's problem

$$-E\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial p}{\partial x} = 0, \ x \in (0, 1),$$

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x}\right) - K\frac{\partial^{2}p}{\partial x^{2}} = 0.$$

$$E\frac{\partial u}{\partial x} = -1, \ p = 0, \ \text{on } x = 0,$$

$$u = 0, \ \frac{\partial p}{\partial x} = 0, \ \text{on } x = 1,$$

$$\frac{\partial u}{\partial x} = 0, \ x \in (0, 1), \ t = 0.$$

Poroelasticity: Numerical Difficulties

Terzaghi's problem

$$-E\frac{\partial^2 u}{\partial x^2} + \frac{\partial p}{\partial x} = 0, \ x \in (0, 1),$$

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x}\right) - K\frac{\partial^2 p}{\partial x^2} = 0.$$

$$E\frac{\partial u}{\partial x} = -1, \ p = 0, \ \text{on } x = 0,$$

$$u = 0, \ \frac{\partial p}{\partial x} = 0, \ \text{on } x = 1,$$

$$\frac{\partial u}{\partial x} = 0, \ x \in (0, 1), \ t = 0.$$

P1-P1 + Implicit Euler

Poroelasticity: Numerical Difficulties

Terzaghi's problem

$$-E\frac{\partial^2 u}{\partial x^2} + \frac{\partial p}{\partial x} = 0, \ x \in (0, 1),$$
$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x}\right) - K\frac{\partial^2 p}{\partial x^2} = 0.$$
$$E\frac{\partial u}{\partial x} = -1, \ p = 0, \ \text{on } x = 0,$$
$$u = 0, \ \frac{\partial p}{\partial x} = 0, \ \text{on } x = 1,$$
$$\frac{\partial u}{\partial x} = 0, \ x \in (0, 1), \ t = 0.$$

P1-P1 + Implicit Euler

P2-P1 + Implicit Euler

Poroelasticity: Numerical Difficulties

- Pressure may have nonphysical oscillations (low permeability/small time step)
- Using Stokes-stable pair reduces the oscillations but does not solve the problem

Stabilized Two-field Formulation

Two-field Formulation with Stabilization

Stabilized scheme: Find $u_h^n \in V_h \subset H_D^1$ and $p_h^n \in Q_h \subset H_{D,p}^1$

 $\begin{aligned} \mathbf{a}(\boldsymbol{u}_{h}^{n},\boldsymbol{v}_{h}) &- \alpha(\operatorname{div}\boldsymbol{v}_{h},\boldsymbol{p}_{h}^{n}) = (f(t_{n}),\boldsymbol{v}_{h}), \quad \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \\ &- \alpha(\operatorname{div}\overline{\partial}_{t}\boldsymbol{u}_{h}^{n},q_{h}) - \mathbf{a}_{p}(\boldsymbol{p}_{h}^{n},q_{h}) - \underbrace{\epsilon h^{2}(\nabla\overline{\partial}_{t}\boldsymbol{p}_{h}^{n},\nabla q_{h})}_{\text{stabilization term}} = 0, \quad \forall q_{h} \in Q_{h} \end{aligned}$

where $\overline{\partial}_t \boldsymbol{u}_h^n := (\boldsymbol{u}_h^n - \boldsymbol{u}_h^{n-1})/\tau$, $\overline{\partial}_t p_h^n := (p_h^n - p_h^{n-1})/\tau$, and $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{v}) := 2\mu \int_{\Omega} \varepsilon(\boldsymbol{u}) : \varepsilon(\boldsymbol{v}) + \lambda \int_{\Omega} \operatorname{div} \boldsymbol{u} \operatorname{div} \boldsymbol{v}, \quad \boldsymbol{a}_p(p, q) := \int_{\Omega} K \nabla p \cdot \nabla q$

Stabilized Two-field Formulation

Two-field Formulation with Stabilization

Stabilized scheme: Find $u_h^n \in V_h \subset H_D^1$ and $p_h^n \in Q_h \subset H_{D,p}^1$

$$\begin{aligned} \mathbf{a}(\mathbf{u}_{h}^{n},\mathbf{v}_{h}) &- \alpha(\operatorname{div}\mathbf{v}_{h},p_{h}^{n}) = (f(t_{n}),\mathbf{v}_{h}), \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\ &- \alpha(\operatorname{div}\overline{\partial}_{t}\mathbf{u}_{h}^{n},q_{h}) - \mathbf{a}_{p}(p_{h}^{n},q_{h}) - \underbrace{\epsilon h^{2}(\nabla\overline{\partial}_{t}p_{h}^{n},\nabla q_{h})}_{\text{stabilization term}} = 0, \quad \forall q_{h} \in Q_{h} \end{aligned}$$

where
$$\overline{\partial}_t \boldsymbol{u}_h^n := (\boldsymbol{u}_h^n - \boldsymbol{u}_h^{n-1})/\tau$$
, $\overline{\partial}_t p_h^n := (p_h^n - p_h^{n-1})/\tau$, and
 $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{v}) := 2\mu \int_{\Omega} \varepsilon(\boldsymbol{u}) : \varepsilon(\boldsymbol{v}) + \lambda \int_{\Omega} \operatorname{div} \boldsymbol{u} \operatorname{div} \boldsymbol{v}, \quad \boldsymbol{a}_p(p, q) := \int_{\Omega} K \nabla p \cdot \nabla q$

Choice of the finite-element pair V_h and Q_h :

Two-field Formulation with Stabilization

Stabilized scheme: Find $u_h^n \in V_h \subset H_D^1$ and $p_h^n \in Q_h \subset H_{D,p}^1$

$$\begin{aligned} \mathbf{a}(\boldsymbol{u}_{h}^{n},\boldsymbol{v}_{h}) &- \alpha(\operatorname{div}\boldsymbol{v}_{h},\boldsymbol{p}_{h}^{n}) = (f(t_{n}),\boldsymbol{v}_{h}), \quad \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \\ &- \alpha(\operatorname{div}\overline{\partial}_{t}\boldsymbol{u}_{h}^{n},q_{h}) - \mathbf{a}_{p}(\boldsymbol{p}_{h}^{n},q_{h}) - \underbrace{\epsilon h^{2}(\nabla\overline{\partial}_{t}\boldsymbol{p}_{h}^{n},\nabla q_{h})}_{\text{etablication}} = 0, \quad \forall q_{h} \in Q_{h} \end{aligned}$$

where
$$\overline{\partial}_t \boldsymbol{u}_h^n := (\boldsymbol{u}_h^n - \boldsymbol{u}_h^{n-1})/\tau$$
, $\overline{\partial}_t p_h^n := (p_h^n - p_h^{n-1})/\tau$, and
 $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{v}) := 2\mu \int_{\Omega} \varepsilon(\boldsymbol{u}) : \varepsilon(\boldsymbol{v}) + \lambda \int_{\Omega} \operatorname{div} \boldsymbol{u} \operatorname{div} \boldsymbol{v}, \quad \boldsymbol{a}_p(p, q) := \int_{\Omega} K \nabla p \cdot \nabla q$

Choice of the finite-element pair V_h and Q_h :

• Stokes-stable: MINI element/P2-P1

Two-field Formulation with Stabilization

Stabilized scheme: Find $u_h^n \in V_h \subset H_D^1$ and $p_h^n \in Q_h \subset H_{D,p}^1$

$$\begin{aligned} \mathbf{a}(\mathbf{u}_{h}^{n},\mathbf{v}_{h}) &- \alpha(\operatorname{div}\mathbf{v}_{h},p_{h}^{n}) = (f(t_{n}),\mathbf{v}_{h}), \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\ &- \alpha(\operatorname{div}\overline{\partial}_{t}\mathbf{u}_{h}^{n},q_{h}) - \mathbf{a}_{p}(p_{h}^{n},q_{h}) - \underbrace{\epsilon h^{2}(\nabla\overline{\partial}_{t}p_{h}^{n},\nabla q_{h})}_{q_{h}} = 0, \quad \forall q_{h} \in Q_{h} \end{aligned}$$

stabilization term

where
$$\overline{\partial}_t \boldsymbol{u}_h^n := (\boldsymbol{u}_h^n - \boldsymbol{u}_h^{n-1})/\tau$$
, $\overline{\partial}_t p_h^n := (p_h^n - p_h^{n-1})/\tau$, and
 $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{v}) := 2\mu \int_{\Omega} \varepsilon(\boldsymbol{u}) : \varepsilon(\boldsymbol{v}) + \lambda \int_{\Omega} \operatorname{div} \boldsymbol{u} \operatorname{div} \boldsymbol{v}, \quad \boldsymbol{a}_p(p, q) := \int_{\Omega} K \nabla p \cdot \nabla q$

Choice of the finite-element pair V_h and Q_h :

- Stokes-stable: MINI element/P2-P1
- Stokes-unstable: P1-P1(+ stabilization)

Effectiveness of the Stabilization

Linear system: Ax = f, $x = (u, p)^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} - \varepsilon h^2 \mathcal{L}_{\boldsymbol{p}} \end{pmatrix}$$

where $a(u, v) \to \mathcal{A}_u, \ -(\operatorname{div} u, p) \to \mathcal{B}, \ (K \nabla p, \nabla q) \to \mathcal{A}_p, \ (\nabla p, \nabla q) \to \mathcal{L}_p$

Linear system: Ax = f, $x = (u, p)^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} - \varepsilon h^2 \mathcal{L}_{\boldsymbol{p}} \end{pmatrix}$$

where $a(u, v) \to \mathcal{A}_u, \ -(\operatorname{div} u, p) \to \mathcal{B}, \ (K \nabla p, \nabla q) \to \mathcal{A}_p, \ (\nabla p, \nabla q) \to \mathcal{L}_p$

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} - \varepsilon h^2 \mathcal{L}_{\boldsymbol{p}} \end{pmatrix}$$

where $a(u, v) \to \mathcal{A}_u, \ -(\operatorname{div} u, p) \to \mathcal{B}, \ (K \nabla p, \nabla q) \to \mathcal{A}_p, \ (\nabla p, \nabla q) \to \mathcal{L}_p$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix}$$

Linear system: Ax = f, $x = (u, p)^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} - \varepsilon h^2 \mathcal{L}_{\boldsymbol{p}} \end{pmatrix}$$

where $a(u, v) \rightarrow \mathcal{A}_{u}, \ -(\operatorname{div} u, p) \rightarrow \mathcal{B}, \ (K \nabla p, \nabla q) \rightarrow \mathcal{A}_{p}, \ (\nabla p, \nabla q) \rightarrow \mathcal{L}_{p}$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{\rho}} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{\rho}} \end{pmatrix}$$

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{p} - \varepsilon h^{2} \mathcal{L}_{p} \end{pmatrix}$$

where $a(\boldsymbol{u}, \boldsymbol{v}) \to \mathcal{A}_{\boldsymbol{u}}, \ -(\operatorname{div} \boldsymbol{u}, p) \to \mathcal{B}, \ (K \nabla p, \nabla q) \to \mathcal{A}_{p}, \ (\nabla p, \nabla q) \to \mathcal{L}_{p}$

A standard approach: assume Stokes-stable pair and $\varepsilon = 0$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix}$$

• Well-posedness follows from the fact that \mathcal{A}_{u} and \mathcal{A}_{p} are SPD

26 / 63

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{p} - \varepsilon h^{2} \mathcal{L}_{p} \end{pmatrix}$$

where $a(\boldsymbol{u},\boldsymbol{v}) \rightarrow \mathcal{A}_{\boldsymbol{u}}, \ -(\operatorname{div} \boldsymbol{u},p) \rightarrow \mathcal{B}, \ (\mathcal{K} \nabla p, \nabla q) \rightarrow \mathcal{A}_{p}, \ (\nabla p, \nabla q) \rightarrow \mathcal{L}_{p}$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix}$$

- Well-posedness follows from the fact that \mathcal{A}_{u} and \mathcal{A}_{p} are SPD
- Argument fails as $\tau \to 0$

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{p} - \varepsilon h^{2} \mathcal{L}_{p} \end{pmatrix}$$

where $a(\boldsymbol{u}, \boldsymbol{v}) \to \mathcal{A}_{\boldsymbol{u}}, \ -(\operatorname{div} \boldsymbol{u}, p) \to \mathcal{B}, \ (K \nabla p, \nabla q) \to \mathcal{A}_{p}, \ (\nabla p, \nabla q) \to \mathcal{L}_{p}$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix}$$

- Well-posedness follows from the fact that \mathcal{A}_{u} and \mathcal{A}_{p} are SPD
- Argument fails as $\tau \rightarrow 0 \not\Longrightarrow$ robust block preconditioners

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{p} - \varepsilon h^{2} \mathcal{L}_{p} \end{pmatrix}$$

where $a(\boldsymbol{u}, \boldsymbol{v}) \to \mathcal{A}_{\boldsymbol{u}}, \ -(\operatorname{div} \boldsymbol{u}, p) \to \mathcal{B}, \ (K \nabla p, \nabla q) \to \mathcal{A}_{p}, \ (\nabla p, \nabla q) \to \mathcal{L}_{p}$

A standard approach: assume Stokes-stable pair and $\varepsilon = 0$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \alpha \mathcal{B} & -\tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{p}} \end{pmatrix}$$

- Well-posedness follows from the fact that \mathcal{A}_{u} and \mathcal{A}_{p} are SPD
- Argument fails as τ → 0 ≠> robust block preconditioners
 For example, it is well-known that the preconditioner

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ \mathbf{0} & \tau \mathcal{A}_{p} \end{pmatrix}$$

only works when coupling is weak and diverges for many cases of practical interest (White, Castelletto, & Tchelepi 2016)

In order to achieve the robustness of the preconditioners:

- Proper weighted norms should be used
- Constants should be independent of the parameters

In order to achieve the robustness of the preconditioners:

- Proper weighted norms should be used
- Constants should be independent of the parameters

Weighted norm:
$$\|\mathbf{x}\|_{\mathcal{H}}^2 := \|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 + \tau \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 + \varepsilon h^2 \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 + \frac{\alpha^2}{\lambda + 2\mu/d} \|\mathbf{p}\|^2$$

 $\|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 := 2\mu \|\varepsilon(\mathbf{u})\|^2 + \lambda \|\operatorname{div} \mathbf{u}\|^2, \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 := (K\nabla \mathbf{p}, \nabla \mathbf{p}), \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 := \|\nabla \mathbf{p}\|^2$

In order to achieve the robustness of the preconditioners:

- Proper weighted norms should be used
- Constants should be independent of the parameters

Weighted norm:
$$\|\mathbf{x}\|_{\mathcal{H}}^2 := \|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 + \tau \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 + \varepsilon h^2 \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 + \frac{\alpha^2}{\lambda + 2\mu/d} \|\mathbf{p}\|^2$$

 $\|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 := 2\mu \|\varepsilon(\mathbf{u})\|^2 + \lambda \|\operatorname{div} \mathbf{u}\|^2, \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 := (K\nabla p, \nabla p), \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 := \|\nabla p\|^2$

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

Assume $\varepsilon = \frac{\theta \alpha^2}{\lambda + 2\mu/d}$ with $\theta > 0$, then the linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}}$. The constants γ and β do not depend on the physical parameters (λ , μ , α , K) and the discretization parameters (h, τ).

Norm-equivalent Preconditioner

Weighted norm:
$$\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 + \tau \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 + \varepsilon h^2 \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 + \frac{\alpha^2}{\lambda + 2\mu/d} \|\mathbf{p}\|^2$$

Norm-equivalent Preconditioner

Weighted norm:
$$\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 + \tau \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 + \varepsilon h^2 \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 + \frac{\alpha^2}{\lambda + 2\mu/d} \|\mathbf{p}\|^2$$

Norm-equivalent preconditioner: block diagonal

$$\mathbf{B}_{D} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \mathbf{0} \\ \mathbf{0} & \tau \mathcal{A}_{\rho} + \varepsilon h^{2} \mathcal{L}_{\rho} + \frac{\alpha^{2}}{\lambda + 2\mu/d} \mathcal{I}_{\rho} \end{pmatrix}^{-1} \text{ and } \mathbf{M}_{D} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}} & \mathbf{0} \\ \mathbf{0} & \mathcal{Q}_{\rho} \end{pmatrix}$$

 \mathcal{Q}_{u} and \mathcal{Q}_{p} are spectral equivalent approximations, e.g., DD/MG

Norm-equivalent Preconditioner

Weighted norm:
$$\|\mathbf{x}\|_{\mathcal{H}}^2 = \|\mathbf{u}\|_{\mathcal{A}_{\mathbf{u}}}^2 + \tau \|\mathbf{p}\|_{\mathcal{A}_{\mathbf{p}}}^2 + \varepsilon h^2 \|\mathbf{p}\|_{\mathcal{L}_{\mathbf{p}}}^2 + \frac{\alpha^2}{\lambda + 2\mu/d} \|\mathbf{p}\|^2$$

Norm-equivalent preconditioner: block diagonal

$$\mathbf{B}_{D} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \mathbf{0} \\ \mathbf{0} & \tau \mathcal{A}_{\boldsymbol{\rho}} + \varepsilon h^{2} \mathcal{L}_{\boldsymbol{\rho}} + \frac{\alpha^{2}}{\lambda + 2\mu/d} \mathcal{I}_{\boldsymbol{\rho}} \end{pmatrix}^{-1} \text{ and } \mathbf{M}_{D} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}} & \mathbf{0} \\ \mathbf{0} & \mathcal{Q}_{\boldsymbol{\rho}} \end{pmatrix}$$

 $\mathcal{Q}_{\textit{\textbf{u}}}$ and $\mathcal{Q}_{\textit{p}}$ are spectral equivalent approximations, e.g., DD/MG

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

If the linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}}$, then we have $\kappa(\mathbf{B}_{D}\mathbf{A}) \leq C_{1}$ and $\kappa(\mathbf{M}_{D}\mathbf{A}) \leq C_{2}$ where C_{1} and C_{2} are constants independent of the physical parameters (λ , μ ,

where C_1 and C_2 are constants independent of the physical parameters (λ , μ α , K) and the discretization parameters (h, τ).

Stabilized Two-field Formulation

FoV-equivalent Preconditioners: Left Preconditioning

Block lower triangular preconditioners:

$$\mathbf{B}_{L} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \mathbf{0} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{p}} + \varepsilon h^{2} \mathcal{L}_{\boldsymbol{p}} + \frac{\alpha^{2}}{\lambda + 2\mu/d} \mathcal{I}_{\boldsymbol{p}} \end{pmatrix}^{-1} \text{ and } \mathbf{M}_{L} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \mathbf{0} \\ -\alpha \mathcal{B} & \mathcal{Q}_{\boldsymbol{p}}^{-1} \end{pmatrix}^{-1}$$

FoV-equivalent Preconditioners: Left Preconditioning

Block lower triangular preconditioners:

$$\mathbf{B}_{L} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \mathbf{0} \\ -\alpha \mathcal{B} & \tau \mathcal{A}_{\boldsymbol{\rho}} + \varepsilon h^{2} \mathcal{L}_{\boldsymbol{\rho}} + \frac{\alpha^{2}}{\lambda + 2\mu/d} \mathcal{I}_{\boldsymbol{\rho}} \end{pmatrix}^{-1} \text{ and } \mathbf{M}_{L} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \mathbf{0} \\ -\alpha \mathcal{B} & \mathcal{Q}_{\boldsymbol{\rho}}^{-1} \end{pmatrix}^{-1}$$

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

If the linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}},$ then we have

$$\sigma \leq \frac{(\mathbf{B}_L \mathbf{A} \mathbf{x}, \mathbf{x})_{\mathbf{B}_D^{-1}}}{(\mathbf{x}, \mathbf{x})_{\mathbf{B}_D^{-1}}}, \ \frac{\|\mathbf{B}_L \mathbf{A} \mathbf{x}\|_{\mathbf{B}_D^{-1}}}{\|\mathbf{x}\|_{\mathbf{B}_D^{-1}}} \leq \Upsilon$$

and, if $\|I - Q_u A_u\|_{A_u} \le \delta < 1$, we have

$$\sigma \leq \frac{(\mathsf{M}_{\scriptscriptstyle L} \mathsf{A} x, x)_{\mathsf{M}_{\scriptscriptstyle D}^{-1}}}{(x, x)_{\mathsf{M}_{\scriptscriptstyle D}^{-1}}}, \ \frac{\|\mathsf{M}_{\scriptscriptstyle L} \mathsf{A} x\|_{\mathsf{M}_{\scriptscriptstyle D}^{-1}}}{\|x\|_{\mathsf{M}_{\scriptscriptstyle D}^{-1}}} \leq \Upsilon$$

where σ and Υ are constants independent of the physical parameters (λ , μ , α , K) and the discretization parameters (h, τ).

1

Stabilized Two-field Formulation

FoV-equivalent Preconditioners: Right Preconditioning

Block upper triangular preconditioners:

$$\mathbf{B}_{\mathcal{U}} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ 0 & \tau \mathcal{A}_{\rho} + \varepsilon h^{2} \mathcal{L}_{\rho} + \frac{\alpha^{2}}{\lambda + 2\mu/d} \mathcal{I}_{\rho} \end{pmatrix}^{-1} \text{ and } \mathbf{M}_{\mathcal{U}} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \alpha \mathcal{B}^{\mathsf{T}} \\ 0 & \mathcal{Q}_{\rho}^{-1} \end{pmatrix}^{-1}$$

FoV-equivalent Preconditioners: Right Preconditioning

Block upper triangular preconditioners:

$$\mathbf{B}_{\mathcal{U}} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}^{\mathsf{T}} \\ 0 & \tau \mathcal{A}_{\boldsymbol{p}} + \varepsilon h^2 \mathcal{L}_{\boldsymbol{p}} + \frac{\alpha^2}{\lambda + 2\mu/d} \mathcal{I}_{\boldsymbol{p}} \end{pmatrix}^{-1} \text{ and } \mathbf{M}_{\mathcal{U}} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \alpha \mathcal{B}^{\mathsf{T}} \\ 0 & \mathcal{Q}_{\boldsymbol{p}}^{-1} \end{pmatrix}^{-1}$$

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

If the linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}}$, then we have

$$\tau \leq \frac{(\mathsf{A}\mathsf{B}_U x', x')_{\mathsf{B}_D}}{(x', x')_{\mathsf{B}_D}}, \ \frac{\|\mathsf{A}\mathsf{B}_U x'\|_{\mathsf{B}_D}}{\|x'\|_{\mathsf{B}_D}} \leq \Upsilon$$

and, if $\|\mathcal{I}_u - \mathcal{Q}_u \mathcal{A}_u\|_{\mathcal{A}_u} \le \delta < 1$, we have

$$\sigma \leq \frac{(\mathbf{A}\mathbf{M}_U \mathbf{x}', \mathbf{x}')_{\mathbf{M}_D}}{(\mathbf{x}', \mathbf{x}')_{\mathbf{M}_D}}, \ \frac{\|\mathbf{A}\mathbf{M}_U \mathbf{x}'\|_{\mathbf{M}_D}}{\|\mathbf{x}'\|_{\mathbf{M}_D}} \leq \Upsilon$$

where σ and Υ are constants independent of the physical parameters (λ , μ , α , K) and the discretization parameters (h, τ).

Relationship with a Sequential-implicit Scheme

Fixed-stress splitting scheme: assume Stokes-stable pair and $\varepsilon = 0$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B} \\ 0 & \mathcal{S}_{\boldsymbol{p}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -\alpha \mathcal{B} & \frac{\alpha^2}{\mathcal{K}} \mathcal{I}_{\boldsymbol{p}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^k \\ \boldsymbol{p}^k \end{pmatrix} + \begin{pmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \end{pmatrix}$$

where $S_p = \tau A_p + \frac{\alpha^2}{\tilde{K}} I_p$, \tilde{K} is a suitable bulk modulus

Kim, Tchelepi, & Juanes 2011; White, Castelletto, & Tchelepi 2015

Relationship with a Sequential-implicit Scheme

Fixed-stress splitting scheme: assume Stokes-stable pair and $\varepsilon = 0$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B} \\ 0 & \mathcal{S}_{\boldsymbol{p}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -\alpha \mathcal{B} & \frac{\alpha^2}{K} \mathcal{I}_{\boldsymbol{p}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^k \\ \boldsymbol{p}^k \end{pmatrix} + \begin{pmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \end{pmatrix}$$

where $S_p = \tau A_p + \frac{\alpha^2}{\tilde{K}} I_p$, \tilde{K} is a suitable bulk modulus

Recast as linear iterative method:

$$\begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \end{pmatrix} + \underbrace{\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B} \\ \boldsymbol{0} & \mathcal{S}_{\boldsymbol{p}} \end{pmatrix}^{-1}}_{\mathbf{B}_{U}} \begin{bmatrix} \begin{pmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \end{pmatrix} - \mathbf{A} \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \end{pmatrix} \end{bmatrix}$$

Kim, Tchelepi, & Juanes 2011; White, Castelletto, & Tchelepi 2015

Relationship with a Sequential-implicit Scheme

Fixed-stress splitting scheme: assume Stokes-stable pair and $\varepsilon = 0$

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B} \\ 0 & \mathcal{S}_{\boldsymbol{p}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -\alpha \mathcal{B} & \frac{\alpha^2}{K} \mathcal{I}_{\boldsymbol{p}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^k \\ \boldsymbol{p}^k \end{pmatrix} + \begin{pmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \end{pmatrix}$$

where $S_p = \tau A_p + \frac{\alpha^2}{\tilde{K}} I_p$, \tilde{K} is a suitable bulk modulus

Recast as linear iterative method:

$$\begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \end{pmatrix} + \underbrace{\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B} \\ 0 & \mathcal{S}_{\boldsymbol{p}} \end{pmatrix}^{-1}}_{\mathbf{B}_{U}} \begin{bmatrix} \begin{pmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \end{pmatrix} - \mathbf{A} \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \end{pmatrix} \end{bmatrix}$$

Our analysis provides:

- Theory of using fixed-stress splitting scheme as a preconditioner
- A good choice of \tilde{K} : $\tilde{K} = \lambda + 2\mu/d$
- Inexact version of fixed-stress splitting scheme and its analysis

Kim, Tchelepi, & Juanes 2011; White, Castelletto, & Tchelepi 2015

Stabilized Two-field Formulation

3D Footing Probelm

- Uniform porous material
- Apply uniform load on the top
- Drained on all sides
- Tolerance of Krylov iterative methods is 10⁻⁶

Due and lit and D

(4) Preconditioner Mo

Performance of Preconditioner: $K = 10^{-6}$ and $\nu = 0.2$

τ h	1/4	1/8	1/16	1/32		
0.1	7	7	8	*		
0.01	7	7	8	*		
0.001	7	7	8	*		
0.0001	7	7	8	*		
(2) P	recon	dition	er B _L			
τ h	1/4	1/8	1/16	1/32		
0.1	5	5	6	*		
0.01	5	5	6	*		
0.001	5	5	6	*		
0.0001	5	5	6	*		
(3) Preconditioner \mathbf{B}_U						
τ h	1/4	1/8	1/16	1/32		
0.1	4	4	4	*		
0.01	4	4	5	*		
0.001	5	5	6	*		
0.0001	5	5	6	*		

τ h	1/4	1/8	1/16	1/32
0.1	8	8	9	9
0.01	8	8	9	9
0.001	8	8	9	9
0.0001	8	8	9	9
(5) P	rcond	itione	r M L	
τ h	1/4	1/8	1/16	1/32
0.1	6	6	8	8
0.01	6	6	8	8
0.001	6	6	8	8
0.0001	7	6	8	8
(6) Pr	reconc	litione	r \mathbf{M}_U	
τ h	1/4	1/8	1/16	1/32
0.1	6	6	8	8
0.01	6	6	8	8
0.001	6	6	8	8
0.0001	6	7	8	8

• The symbol * in the tables on the left is for cases when the direct solver ran out of memory.

Performance of Preconditioners: Varying K and ν

Table: Varying K:
$$\nu = 0.2$$
, $h = 1/16$ and $\tau = 0.01$

	1	10^{-2}	10^{-4}	10^{-6}	10-8	10^{-10}
B _D	4	7	8	8	8	8
\mathbf{B}_L	2	5	6	6	6	6
\mathbf{B}_U	3	4	5	5	5	5
MD	5	8	9	9	9	9
M_L	5	7	8	8	8	8
M_U	5	7	8	8	9	8

Table: Varying ν : $K = 10^{-6}$, h = 1/16 and $\tau = 0.01$

	0.1	0.2	0.4	0.45	0.49	0.499
B _D	7	8	11	11	12	12
\mathbf{B}_L	5	6	8	8	8	9
\mathbf{B}_U	4	5	6	6	5	4
M _D	8	9	12	13	14	13
M_L	7	8	11	11	12	12
M_U	7	8	7	8	17	11

Choices of the finite-element spaces:

- Displacement u: Crouzeix-Raviart element
- Darcy velocity w: lowest order Raviart-Thomas element
- Pressure *p*: piecewise constant element

Choices of the finite-element spaces:

- Displacement u: Crouzeix-Raviart element
- Darcy velocity w: lowest order Raviart-Thomas element
- Pressure p: piecewise constant element

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p}, \mathbf{w})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}_{\boldsymbol{u}}^{\mathsf{T}} & \mathbf{0} \\ -\alpha \mathcal{B}_{\boldsymbol{u}} & \mathbf{0} & -\tau \mathcal{B}_{\boldsymbol{w}} \\ \mathbf{0} & \tau \mathcal{B}_{\boldsymbol{w}}^{\mathsf{T}} & \tau \mathcal{I}_{\boldsymbol{w}} \end{pmatrix}$$

Choices of the finite-element spaces:

- Displacement u: Crouzeix-Raviart element
- Darcy velocity w: lowest order Raviart-Thomas element
- Pressure p: piecewise constant element

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p}, \mathbf{w})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}_{\boldsymbol{u}}^{\mathsf{T}} & \mathbf{0} \\ -\alpha \mathcal{B}_{\boldsymbol{u}} & \mathbf{0} & -\tau \mathcal{B}_{\boldsymbol{w}} \\ \mathbf{0} & \tau \mathcal{B}_{\boldsymbol{w}}^{\mathsf{T}} & \tau \mathcal{I}_{\boldsymbol{w}} \end{pmatrix}$$

Weighted norm:

$$\|\boldsymbol{x}\|_{\mathcal{H}}^{2} := \|\boldsymbol{u}\|_{\mathcal{A}_{\boldsymbol{u}}}^{2} + \alpha^{2} \left(\lambda + \frac{2\mu}{d}\right)^{-1} \|\boldsymbol{p}\|^{2} + \tau \|\boldsymbol{w}\|_{K^{-1}}^{2} + \frac{\tau^{2}}{\alpha^{2}} \left(\lambda + \frac{2\mu}{d}\right) \|\nabla \cdot \boldsymbol{w}\|^{2}$$

Choices of the finite-element spaces:

- Displacement u: Crouzeix-Raviart element
- Darcy velocity w: lowest order Raviart-Thomas element
- Pressure p: piecewise constant element

Linear system: $\mathbf{A}\mathbf{x} = \mathbf{f}, \ \mathbf{x} = (\mathbf{u}, \mathbf{p}, \mathbf{w})^T$

$$\mathbf{A} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}_{\boldsymbol{u}}^{\mathsf{T}} & \mathbf{0} \\ -\alpha \mathcal{B}_{\boldsymbol{u}} & \mathbf{0} & -\tau \mathcal{B}_{\boldsymbol{w}} \\ \mathbf{0} & \tau \mathcal{B}_{\boldsymbol{w}}^{\mathsf{T}} & \tau \mathcal{I}_{\boldsymbol{w}} \end{pmatrix}$$

Weighted norm:

$$\|\boldsymbol{x}\|_{\mathcal{H}}^{2} := \|\boldsymbol{u}\|_{\mathcal{A}_{\boldsymbol{u}}}^{2} + \alpha^{2} \left(\lambda + \frac{2\mu}{d}\right)^{-1} \|\boldsymbol{p}\|^{2} + \tau \|\boldsymbol{w}\|_{K^{-1}}^{2} + \frac{\tau^{2}}{\alpha^{2}} \left(\lambda + \frac{2\mu}{d}\right) \|\nabla \cdot \boldsymbol{w}\|^{2}$$

Theorem (Adler, Gaspar, Hu, Rodrigo, & Z. 2017)

The linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}}$ and the constants γ and β do not depend on the physical parameters (λ , μ , α , K) and the discretization parameters (h, τ).

Three-field Formulation

Block Preconditioners

Norm-equivalent preconditioners: block diagonal

$$\mathbf{B}_{D} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & 0 & 0 \\ 0 & \frac{\alpha^{2}}{\lambda + \frac{2\mu}{d}} \mathcal{I}_{p} & 0 \\ 0 & 0 & \tau \mathcal{I}_{\boldsymbol{w}} + \frac{\tau^{2}}{\alpha^{2}} \left(\lambda + \frac{2\mu}{d}\right) \mathcal{A}_{\boldsymbol{w}} \end{pmatrix}^{-1}$$

FoV-equivalent preconditioners: block triangular

$$\mathbf{B}_{L} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & 0 & 0 \\ -\alpha \mathcal{B}_{\boldsymbol{u}} & \frac{\alpha^{2}}{\lambda + \frac{2\mu}{d}} \mathcal{I}_{p} & 0 \\ 0 & \tau \mathcal{B}_{\boldsymbol{w}}^{T} & \tau \mathcal{I}_{\boldsymbol{w}} + \frac{\tau^{2}}{\alpha^{2}} \left(\lambda + \frac{2\mu}{d}\right) \mathcal{A}_{\boldsymbol{w}} \end{pmatrix}^{-1}$$
$$\mathbf{B}_{U} = \begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}_{\boldsymbol{u}}^{T} & 0 \\ 0 & \frac{\alpha^{2}}{\lambda + \frac{2\mu}{d}} \mathcal{I}_{p} & -\tau \mathcal{B}_{\boldsymbol{w}} \\ 0 & 0 & \tau \mathcal{I}_{\boldsymbol{w}} + \frac{\tau^{2}}{\alpha^{2}} \left(\lambda + \frac{2\mu}{d}\right) \mathcal{A}_{\boldsymbol{w}} \end{pmatrix}^{-1}$$

8

Three-field Formulation

Block Preconditioners

Norm-equivalent preconditioners: block diagonal

$$\mathbf{M}_D = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}} & 0 & 0\\ 0 & \mathcal{Q}_{\boldsymbol{p}} & 0\\ 0 & 0 & \mathcal{Q}_{\boldsymbol{w}} \end{pmatrix}$$

FoV-equivalent preconditioners: block triangular

$$\mathbf{M}_{L} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & 0 & 0\\ -\alpha \mathcal{B}_{\boldsymbol{u}} & \mathcal{Q}_{\boldsymbol{p}}^{-1} & 0\\ 0 & \tau \mathcal{B}_{\boldsymbol{w}}^{T} & \mathcal{Q}_{\boldsymbol{w}}^{-1} \end{pmatrix}^{-1}$$
$$\mathbf{M}_{U} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{u}}^{-1} & \alpha \mathcal{B}_{\boldsymbol{u}}^{T} & 0\\ 0 & \mathcal{Q}_{\boldsymbol{p}}^{-1} & -\tau \mathcal{B}_{\boldsymbol{w}}\\ 0 & 0 & \mathcal{Q}_{\boldsymbol{w}}^{-1} \end{pmatrix}^{-1}$$

 Q_u : DD/MG Q_p : Jacobi Q_w : Hiptmair-Xu

L. Zikatanov

(Penn State)

Three-field Formulation

Fixed-Stress Splitting Scheme for Three-field Formulation

Linear iterative method:

$$\begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \\ \boldsymbol{w}^{k+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \\ \boldsymbol{w}^{k} \end{pmatrix} + \mathbf{B}_{U} \begin{bmatrix} \begin{pmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \\ f_{\boldsymbol{w}} \end{pmatrix} - \mathbf{A} \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \\ \boldsymbol{w}^{k} \end{pmatrix} \end{bmatrix}$$

Three-field Formulation

Fixed-Stress Splitting Scheme for Three-field Formulation

Linear iterative method:

$$\begin{pmatrix} \boldsymbol{u}^{k+1} \\ \boldsymbol{p}^{k+1} \\ \boldsymbol{w}^{k+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \\ \boldsymbol{w}^{k} \end{pmatrix} + \mathbf{B}_{U} \begin{bmatrix} f_{\boldsymbol{u}} \\ f_{\boldsymbol{p}} \\ f_{\boldsymbol{w}} \end{pmatrix} - \mathbf{A} \begin{pmatrix} \boldsymbol{u}^{k} \\ \boldsymbol{p}^{k} \\ \boldsymbol{w}^{k} \end{pmatrix} \end{bmatrix}$$

"Fixed-stress" splitting scheme:

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{u}} & \alpha \mathcal{B}_{\boldsymbol{u}}^{T} & 0\\ 0 & \frac{\alpha^{2}\mu}{\lambda + \frac{2\mu}{d}} \mathcal{I}_{p} & -\tau \mathcal{B}_{\boldsymbol{w}}\\ 0 & 0 & \tau \mathcal{I}_{\boldsymbol{w}} + \tau^{2} \frac{\lambda + \frac{2\mu}{d}}{\alpha^{2}} \mathcal{A}_{\boldsymbol{w}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^{k+1}\\ \boldsymbol{p}^{k+1}\\ \boldsymbol{w}^{k+1} \end{pmatrix} \\ = \begin{pmatrix} 0 & 0 & 0\\ -\alpha \mathcal{B}_{\boldsymbol{u}} & \frac{\alpha^{2}}{\lambda + \frac{2\mu}{d}} \mathcal{I}_{p} & 0\\ 0 & \tau \mathcal{B}_{\boldsymbol{w}}^{T} & \tau^{2} \frac{\lambda + \frac{2\mu}{d}}{\alpha^{2}} \mathcal{A}_{\boldsymbol{w}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^{k}\\ \boldsymbol{p}^{k}\\ \boldsymbol{w}^{k} \end{pmatrix} + \begin{pmatrix} f_{\boldsymbol{u}}\\ f_{p}\\ \boldsymbol{w}^{k} \end{pmatrix}$$

Three-field Formulation

Square Domain Problem with Uniform Load

Figure: Computational domain and boundary conditions

- Uniform porous material
- Apply a uniform load on the top
- Impermeable and rigid on the other sides
- Tolerance of Krylov iterative method is 10^{-6}

Three-field Formulation

Performance of Preconditioner: $K = 10^{-6}$ and $\nu = 0.2$

(1) Preconditioner B _D					
τ h	1/8	1/16	1/32	1/64	
0.1	42	46	48	52	
0.01	41	43	47	47	
0.001	41	43	43	47	
0.0001	41	43	43	46	
(2) Preconditioner \mathbf{B}_L					
τ h	1/8	1/16	1/32	1/64	
0.1	22	23	24	25	
0.01	22	22	23	25	
0.001	22	22	23	24	
0.0001	22	22	23	24	
(3) Preconditioner \mathbf{B}_U					
τ h	1/8	1/16	1/32	1/64	
0.1	23	24	26	27	
0.01	20	21	23	24	
0.001	18	18	21	22	
0.0001	18	18	19	19	

(4) Preconditioner \mathbf{M}_D

τ h	1/8	1/16	1/32	1/64
0.1	42	48	54	57
0.01	42	44	49	50
0.001	42	44	49	49
0.0001	42	46	49	50
(5) F	rconc	litione	· M _L	
τ h	1/8	1/16	1/32	1/64
0.1	24	26	26	31
0.01	24	25	27	28
0.001	24	25	27	28
0.0001	24	25	27	28
(6) P	recond	ditione	r M U	
τ h	1/8	1/16	1/32	1/64
0.1	26	30	29	32
0.01	24	26	26	28

25

25

24

29

0.001

0.0001

26

24

30

28

26

30

Performance of Preconditioners: Varying K and ν

Table: Varying K:
$$\nu = 0.2$$
, $h = 1/32$ and $\tau = 0.01$

	1	10^{-2}	10^{-4}	10^{-6}	10-8	10^{-10}
B _D	80	61	47	47	47	47
\mathbf{B}_L	54	41	23	23	23	23
\mathbf{B}_U	52	41	23	23	23	23
MD	98	63	49	49	49	49
M_L	76	45	27	27	27	27
M_U	68	44	30	30	30	30

Table: Varying ν : $K = 10^{-6}$, h = 1/32 and $\tau = 0.01$

	0.1	0.2	0.4	0.45	0.49	0.499
B _D	51	47	30	24	17	13
\mathbf{B}_L	26	23	15	12	9	7
\mathbf{B}_U	26	23	16	13	9	6
M _D	53	49	35	29	24	21
M_L	30	27	19	16	14	13
M_U	33	30	22	17	18	20

Maxwell's System

Let \mathcal{O} be a bounded and connected domain, we consider the Maxwell's equation in the exterior of $\overline{\mathcal{O}}$, i.e. $\Omega = \mathbb{R}^3 \backslash \overline{\mathcal{O}}$

$oldsymbol{B}_t+{ t curl}~oldsymbol{E}$	=	0	[Faraday's Law]
$\varepsilon \boldsymbol{E}_t - \operatorname{curl} \mu^{-1} \boldsymbol{B}$	=	— j	[Ampere's Law]
div $\varepsilon \boldsymbol{E}$	=	ρ	[Gauß's law]
div B	=	0	[Solenoidal constraint]

arepsilon - permitivity of the medium; μ - magnetic permeability

Maxwell's System

Let \mathcal{O} be a bounded and connected domain, we consider the Maxwell's equation in the exterior of $\tilde{\mathcal{O}}$, i.e. $\Omega = \mathbb{R}^3 \backslash \tilde{\mathcal{O}}$

$oldsymbol{B}_t+{\sf curl}~oldsymbol{E}$	=	0	[Faraday's Law]
$\varepsilon \boldsymbol{E}_t - curl \mu^{-1} \boldsymbol{B}$	=	— j	[Ampere's Law]
div $\varepsilon \boldsymbol{E}$	=	ho	[Gauß's law]
div B	=	0	[Solenoidal constraint]

arepsilon - permitivity of the medium; μ - magnetic permeability

Remark: computationally, we use $\Omega=\mathcal{S}\backslash\bar{\mathcal{O}}$ where \mathcal{S} is a ball in \mathbb{R}^3 with sufficiently large radius

Boundary Conditions

Boundary Conditions

Perfect Conductor Boundary Conditions on the Outer Sphere ${\mathcal S}$

 $\boldsymbol{E} \times \boldsymbol{n} = \boldsymbol{0}$ and $\boldsymbol{B} \cdot \boldsymbol{n} = 0$, where \boldsymbol{n} is the outward unit normal

Boundary Conditions

Perfect Conductor Boundary Conditions on the Outer Sphere S $E \times n = 0$ and $B \cdot n = 0$, where *n* is the outward unit normal

Impedance/Dissipative Boundary Conditions on $\Gamma_i = \partial \Omega \cap \partial \mathcal{O}$ $(1+\gamma)\mathbf{\mathcal{E}}_{tan} = -\mathbf{n} \times \mathbf{\mathcal{B}}_{tan}$ or equivalently $(1+\gamma)\mathbf{\mathcal{E}}_{tan} = -\mathbf{n} \times \mathbf{\mathcal{B}}$

Boundary Conditions

Perfect Conductor Boundary Conditions on the Outer Sphere S $E \times n = 0$ and $B \cdot n = 0$, where *n* is the outward unit normal

Impedance/Dissipative Boundary Conditions on $\Gamma_i = \partial \Omega \cap \partial \mathcal{O}$ $(1 + \gamma) \boldsymbol{E}_{tan} = -\boldsymbol{n} \times \boldsymbol{B}_{tan}$ or equivalently $(1 + \gamma) \boldsymbol{E}_{tan} = -\boldsymbol{n} \times \boldsymbol{B}$

Remarks:

Boundary Conditions

Perfect Conductor Boundary Conditions on the Outer Sphere S $E \times n = 0$ and $B \cdot n = 0$, where *n* is the outward unit normal

Impedance/Dissipative Boundary Conditions on $\Gamma_i = \partial \Omega \cap \partial \mathcal{O}$ $(1+\gamma)\boldsymbol{E}_{tan} = -\boldsymbol{n} \times \boldsymbol{B}_{tan}$ or equivalently $(1+\gamma)\boldsymbol{E}_{tan} = -\boldsymbol{n} \times \boldsymbol{B}$

Remarks:

- Many materials are not perfect conductors, but allow the fields to penetrate only a small distance
- Notation: $\boldsymbol{E}_{tan} := \boldsymbol{E} (\boldsymbol{n} \cdot \boldsymbol{E}) \boldsymbol{n}$

Asymptotically Disappearing Solutions

Asymptotically Disappearing Solutions (ADS)

Solutions to Maxwell's equations, whose total energy decays exponentially with time.

Ref: F. Colombini, V. Petkov, and J. Rauch, Incoming and disappearing solutions for Maxwell's equations, Proc. Amer. Math. Soc., 139 (2011).

Asymptotically Disappearing Solutions

Asymptotically Disappearing Solutions (ADS)

Solutions to Maxwell's equations, whose total energy decays exponentially with time.

- Dissipative systems (boundary conditions) are of interest because not everything is perfect conductor.
- The existence of ADS shows that the leading term of the back-scattering operator is negligibly small and indicates loss of information. (Majda, 1976)
- Shown by Colombini, Petkov, and Rauch that with appropriate dissipative boundary conditions on the exterior of a sphere, ADS are obtained.

Ref: F. Colombini, V. Petkov, and J. Rauch, Incoming and disappearing solutions for Maxwell's equations, Proc. Amer. Math. Soc., 139 (2011).

Asymptotically Disappearing Solutions

Asymptotically Disappearing Solutions

The function u = (E, B) is called asymptotically disapearing solution if $u(t, x) = e^{\lambda t} w(x),$ with $\mathfrak{Re}(\lambda) < 0.$

 For the sphere (and other domains with smooth boundary), the spectra of the semi-group generator corresponding to the dissipative b.c. has isolated eigenvalues with Re(λ) < 0. They are all of finite multiplicity.

- The dimension of the space spanned by the generalized eigenfunctions corresponding to these eigenvalues, λ , is also finite.
- The corresponding eigenfunctions, when taken as initial conditions, lead to asymptotically disappearing solutions.

Variational Weak Form

Variational Weak Form

- Introduce an auxiliary variable p associated with the constraint of E
- $H_{imp}(div) = \{ \boldsymbol{v} \in H(div) \text{ such that } \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial \Omega \setminus \Gamma_i} = 0 \}$
- $H_{imp}(curl) = \{ \mathbf{v} \in H(curl) \text{ such that } \mathbf{v} \times \mathbf{n} |_{\partial \Omega \setminus \Gamma_i} = 0 \}$
- $H_0(\operatorname{grad}) = \{ v \in H^1(\Omega) \text{ such that } v \big|_{\partial\Omega} = 0 \}$

Variational Weak Form

- Introduce an auxiliary variable p associated with the constraint of E
- $H_{imp}(div) = \{ \boldsymbol{v} \in H(div) \text{ such that } \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial \Omega \setminus \Gamma_i} = 0 \}$
- $H_{imp}(curl) = \{ \boldsymbol{v} \in H(curl) \text{ such that } \boldsymbol{v} \times \boldsymbol{n} |_{\partial \Omega \setminus \Gamma_i} = 0 \}$
- $H_0(\operatorname{grad}) = \{ v \in H^1(\Omega) \text{ such that } v \big|_{\partial\Omega} = 0 \}$

Weak Form: Find $(\boldsymbol{B}, \boldsymbol{E}, \boldsymbol{p}) \in H_{imp}(div; t) \times H_{imp}(curl; t) \times H_0(grad; t), \forall$ $(\boldsymbol{C}, \boldsymbol{F}, \boldsymbol{q}) \in H_{imp}(div) \times H_{imp}(curl) \times H_0^1(\Omega)$ and for all t > 0, $\langle \mu^{-1}\boldsymbol{B}_t, \boldsymbol{C} \rangle + \langle \mu^{-1}curl \boldsymbol{E}, \boldsymbol{C} \rangle = 0$

$$\langle \varepsilon \boldsymbol{E}_t, \boldsymbol{F} \rangle + \langle \varepsilon \text{ grad } \boldsymbol{p}, \boldsymbol{F} \rangle - \langle \mu^{-1} \boldsymbol{B}, \text{curl } \boldsymbol{F} \rangle + (1 + \gamma) \int_{\Gamma_i} \langle \boldsymbol{E}_{\tan}, \boldsymbol{F}_{\tan} \rangle = -(\boldsymbol{j}, \boldsymbol{F})$$

 $\langle \boldsymbol{p}_t, \boldsymbol{q} \rangle - \langle \varepsilon \boldsymbol{E}, \text{grad } \boldsymbol{q} \rangle = 0$

45 / 63
Variational Weak Form

- Introduce an auxiliary variable p associated with the constraint of E
- $H_{imp}(div) = \{ \boldsymbol{v} \in H(div) \text{ such that } \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial \Omega \setminus \Gamma_i} = 0 \}$
- $H_{imp}(curl) = \{ \boldsymbol{v} \in H(curl) \text{ such that } \boldsymbol{v} \times \boldsymbol{n} |_{\partial \Omega \setminus \Gamma_i} = 0 \}$
- $H_0(\text{grad}) = \{ v \in H^1(\Omega) \text{ such that } v \big|_{\partial\Omega} = 0 \}$

Weak Form: Find
$$(\boldsymbol{B}, \boldsymbol{E}, \boldsymbol{p}) \in H_{imp}(\operatorname{div}; t) \times H_{imp}(\operatorname{curl}; t) \times H_0(\operatorname{grad}; t), \forall$$

 $(\boldsymbol{C}, \boldsymbol{F}, \boldsymbol{q}) \in H_{imp}(\operatorname{div}) \times H_{imp}(\operatorname{curl}) \times H_0^1(\Omega) \text{ and for all } t > 0,$
 $\langle \mu^{-1}\boldsymbol{B}_t, \boldsymbol{C} \rangle + \langle \mu^{-1} \operatorname{curl} \boldsymbol{E}, \boldsymbol{C} \rangle = 0$
 $\langle \varepsilon \boldsymbol{E}_t, \boldsymbol{F} \rangle + \langle \varepsilon \operatorname{grad} \boldsymbol{p}, \boldsymbol{F} \rangle - \langle \mu^{-1}\boldsymbol{B}, \operatorname{curl} \boldsymbol{F} \rangle + (1 + \gamma) \int_{\Gamma_i} \langle \boldsymbol{E}_{tan}, \boldsymbol{F}_{tan} \rangle = -(\boldsymbol{j}, \boldsymbol{F})$
 $\langle \boldsymbol{p}_t, \boldsymbol{q} \rangle - \langle \varepsilon \boldsymbol{E}, \operatorname{grad} \boldsymbol{q} \rangle = 0$

Proposition [Adler, Petkov, & Z. 2013]

- If div $B_0 = 0$, then div B = 0 for all t > 0
- If $\langle \boldsymbol{E}_0, \operatorname{grad} q \rangle = 0$, then $\langle \boldsymbol{E}, \operatorname{grad} q \rangle = 0$, $\forall q \in H_0(\operatorname{grad})$, for all t > 0

N

Structure-Preserving Discretization

- *B*ⁿ_h ∈ *H*_{h,imp}(div) ⊂ *H*_{imp}(div): Raviart-Thomas element
- $E_h^n \in H_{h,imp}(curl) \subset H_{imp}(curl)$: Nédélec element
- $p_h^n \in H_{h,0}(\text{grad}) \subset H_0(\text{grad})$: linear element

Structure-Preserving Discretization

- *B*ⁿ_h ∈ *H*_{h,imp}(div) ⊂ *H*_{imp}(div): Raviart-Thomas element
- $E_h^n \in H_{h,imp}(curl) \subset H_{imp}(curl)$: Nédélec element
- $p_h^n \in H_{h,0}(\text{grad}) \subset H_0(\text{grad})$: linear element

Full Discretization: Crank-Nicolson scheme for temporal discretization

$$\begin{split} \langle \mu^{-1} \frac{\boldsymbol{B}_{h}^{n} - \boldsymbol{B}_{h}^{n-1}}{\tau}, \boldsymbol{C}_{h} \rangle + \langle \mu^{-1} \operatorname{curl} \frac{\boldsymbol{E}_{h}^{n} + \boldsymbol{E}_{h}^{n-1}}{2}, \boldsymbol{C}_{h} \rangle &= 0 \\ \langle \varepsilon \frac{\boldsymbol{E}_{h}^{n} - \boldsymbol{E}_{h}^{n-1}}{\tau}, \boldsymbol{F}_{h} \rangle + \langle \varepsilon \frac{\operatorname{grad} \boldsymbol{p}_{h}^{n} + \operatorname{grad} \boldsymbol{p}_{h}^{n-1}}{2}, \boldsymbol{F}_{h} \rangle - \langle \mu^{-1} \frac{\boldsymbol{B}_{h}^{n} + \boldsymbol{B}_{h}^{n-1}}{2}, \operatorname{curl} \boldsymbol{F}_{h} \rangle \\ &+ (1 + \gamma) \int_{\Gamma_{i}} \langle \frac{\boldsymbol{E}_{h, \tan}^{n} + \boldsymbol{E}_{h, \tan}^{n-1}}{2}, \boldsymbol{F}_{h, \tan} \rangle = -(\frac{\boldsymbol{j}^{n} + \boldsymbol{j}^{n-1}}{2}, \boldsymbol{F}_{h}) \\ \langle \frac{\boldsymbol{p}_{h}^{n} - \boldsymbol{p}_{h}^{n-1}}{\tau}, \boldsymbol{q}_{h} \rangle - \langle \varepsilon \frac{\boldsymbol{E}_{h}^{n} + \boldsymbol{E}_{h}^{n-1}}{2}, \operatorname{grad} \boldsymbol{q}_{h} \rangle = 0 \end{split}$$

Structure-Preserving Discretization

- $B_h^n \in H_{h,imp}(div) \subset H_{imp}(div)$: Raviart-Thomas element
- $E_h^n \in H_{h,imp}(curl) \subset H_{imp}(curl)$: Nédélec element
- $p_h^n \in H_{h,0}(\text{grad}) \subset H_0(\text{grad})$: linear element

Full Discretization: Crank-Nicolson scheme for temporal discretization

$$\begin{split} \langle \mu^{-1} \frac{\boldsymbol{B}_{h}^{n} - \boldsymbol{B}_{h}^{n-1}}{\tau}, \boldsymbol{C}_{h} \rangle + \langle \mu^{-1} \operatorname{curl} \frac{\boldsymbol{E}_{h}^{n} + \boldsymbol{E}_{h}^{n-1}}{2}, \boldsymbol{C}_{h} \rangle &= 0 \\ \langle \varepsilon \frac{\boldsymbol{E}_{h}^{n} - \boldsymbol{E}_{h}^{n-1}}{\tau}, \boldsymbol{F}_{h} \rangle + \langle \varepsilon \frac{\operatorname{grad} \boldsymbol{p}_{h}^{n} + \operatorname{grad} \boldsymbol{p}_{h}^{n-1}}{2}, \boldsymbol{F}_{h} \rangle - \langle \mu^{-1} \frac{\boldsymbol{B}_{h}^{n} + \boldsymbol{B}_{h}^{n-1}}{2}, \operatorname{curl} \boldsymbol{F}_{h} \rangle \\ &+ (1 + \gamma) \int_{\Gamma_{i}} \langle \frac{\boldsymbol{E}_{h, \tan}^{n} + \boldsymbol{E}_{h, \tan}^{n-1}}{2}, \boldsymbol{F}_{h, \tan} \rangle = -(\frac{\boldsymbol{j}^{n} + \boldsymbol{j}^{n-1}}{2}, \boldsymbol{F}_{h}) \\ \langle \frac{\boldsymbol{p}_{h}^{n} - \boldsymbol{p}_{h}^{n-1}}{\tau}, \boldsymbol{q}_{h} \rangle - \langle \varepsilon \frac{\boldsymbol{E}_{h}^{n} + \boldsymbol{E}_{h}^{n-1}}{2}, \operatorname{grad} \boldsymbol{q}_{h} \rangle = 0 \end{split}$$

Proposition [Adler, Petkov, & Z. 2013]

- If div $B_h^0 = 0$, then div $B_h^n = 0$ for all $n \ge 1$
- If $\langle \boldsymbol{E}_{h}^{0}, \operatorname{grad} q \rangle = 0$, then $\langle \boldsymbol{E}_{h}^{n}, \operatorname{grad} q \rangle = 0$, $\forall q \in H_{h,0}(\operatorname{grad})$, for all $n \geq 1$

Poincaré-Steklov operator definition of ADS

- ADS: $\boldsymbol{j} = 0$, and $(\boldsymbol{E}, \boldsymbol{B}) \leftarrow e^{-\eta t}(\boldsymbol{E}, \boldsymbol{B})$, with $\mathfrak{Re}(\eta) > 0$.
- From the weak form we have: B = η⁻¹ curl E and taking F = ∇q in the second equation gives p = 0.
- Thus, $(\boldsymbol{E}, \boldsymbol{B} = \eta^{-1} \operatorname{curl} \boldsymbol{E})$ is an ADS iff

$$\langle A(\eta) \boldsymbol{E}, \boldsymbol{F}
angle = \eta \langle \boldsymbol{E}, \boldsymbol{F}
angle + rac{1}{\eta} \langle \mathsf{curl} \, \boldsymbol{E}, \mathsf{curl} \, \boldsymbol{F}
angle = (1+\gamma) \langle E_{ ext{tan}}, F_{ ext{tan}}
angle_{\Gamma_i}.$$

- Let S(η) be the Poincaré-Steklov operator for A(η), i.e. the Schur complement corresponding to "interior/boundary" splitting.
- Action of $S(\eta)$, i.e. $S(\eta)g$ for a given g (on the boundary):
 - Solve $A(\eta)\mathbf{E} = \mathbf{0}$, in Ω and $\mathbf{E}_{tan} = \mathbf{g}$ on Γ_i .
 - Define $\langle S(\eta) \boldsymbol{g}, \boldsymbol{w} \rangle_{\Gamma_i} := \langle A(\eta) \boldsymbol{E}, \widetilde{\boldsymbol{w}} \rangle$, for all \boldsymbol{w} in some trace space.
 - Here, for w given on Γ_i , \tilde{w} is an H(curl) bdd extension of w in Ω .

Poincaré-Steklov operator definition of ADS

- ADS: $\boldsymbol{j} = 0$, and $(\boldsymbol{E}, \boldsymbol{B}) \leftarrow e^{-\eta t}(\boldsymbol{E}, \boldsymbol{B})$, with $\mathfrak{Re}(\eta) > 0$.
- From the weak form we have: B = η⁻¹ curl E and taking F = ∇q in the second equation gives p = 0.
- Thus, $(\boldsymbol{E}, \boldsymbol{B} = \eta^{-1} \operatorname{curl} \boldsymbol{E})$ is an ADS iff

$$\langle A(\eta) \boldsymbol{E}, \boldsymbol{F}
angle = \eta \langle \boldsymbol{E}, \boldsymbol{F}
angle + rac{1}{\eta} \langle \operatorname{curl} \boldsymbol{E}, \operatorname{curl} \boldsymbol{F}
angle = (1 + \gamma) \langle E_{\operatorname{tan}}, F_{\operatorname{tan}}
angle_{\Gamma_i}.$$

 Let S(η) be the Poincaré-Steklov operator for A(η), i.e. the Schur complement corresponding to "interior/boundary" splitting.

ADS definition:

Given γ , find $\eta \in \mathbb{C}$, such that $(1 + \gamma)$ is an eigenvalue of $S(\eta)$. The corresponding eigenvector is \boldsymbol{E}_{tan} which determines \boldsymbol{E} uniquelly.

• Non-linear (inverse) eigenvalue problem and its solution by Beyn's method based on contour integration (Beyn 2012) requires repeated computation of the action of $S(\eta)$.

Difficulties in modeling ADS:

- Time dependent problem: Solving the linear system on every time step;
- Poincaré-Steklov formulation: Calculating just one the action of $S(\eta)$ requires solution of the discretized Maxwell's system.
- Efficient Solver is needed!!

For numerical modelling of ADS:

- Design efficient solvers for solving linear systems at each time step
- Operator preconditioners based on exact block factorization
- Show robustness with respect to the physical and discretization parameters

Linear systems modeling ADS

Linear system: Find $(B, E, p) \in H_{h,imp}(div) \times H_{h,imp}(curl) \times H_{h,0}(grad)$, such that for all $(C, F, q) \in H_{h,imp}(div) \times H_{h,imp}(curl) \times H_{h,0}(grad)$,

$$\begin{aligned} &\frac{2}{\tau} \langle \mu^{-1} \boldsymbol{B}, \boldsymbol{C} \rangle + \langle \mu^{-1} \operatorname{curl} \boldsymbol{E}, \boldsymbol{C} \rangle = \langle \boldsymbol{g}_{\boldsymbol{B}}, \boldsymbol{C} \rangle \\ &\frac{2}{\tau} \langle \varepsilon \boldsymbol{E}, \boldsymbol{F} \rangle + \langle \varepsilon \operatorname{grad} \boldsymbol{p}, \boldsymbol{F} \rangle - \langle \mu^{-1} \boldsymbol{B}, \operatorname{curl} \boldsymbol{F} \rangle + (1 + \gamma) \int_{\Gamma_{i}} \langle \boldsymbol{E}_{\operatorname{tan}}, \boldsymbol{F}_{\operatorname{tan}} \rangle = (\boldsymbol{g}_{\boldsymbol{E}}, \boldsymbol{F}) \\ &\frac{2}{\tau} \langle \boldsymbol{p}, \boldsymbol{q} \rangle - \langle \varepsilon \boldsymbol{E}, \operatorname{grad} \boldsymbol{q} \rangle = \langle \boldsymbol{g}_{\boldsymbol{p}}, \boldsymbol{q} \rangle \end{aligned}$$

Linear systems modeling ADS

Linear system: Find $(\boldsymbol{B}, \boldsymbol{E}, \boldsymbol{p}) \in H_{h, imp}(div) \times H_{h, imp}(curl) \times H_{h,0}(grad)$, such that for all $(\boldsymbol{C}, \boldsymbol{F}, \boldsymbol{q}) \in H_{h, imp}(div) \times H_{h, imp}(curl) \times H_{h,0}(grad)$,

$$\begin{split} &\frac{2}{\tau} \langle \mu^{-1} \boldsymbol{B}, \boldsymbol{C} \rangle + \langle \mu^{-1} \operatorname{curl} \boldsymbol{E}, \boldsymbol{C} \rangle = \langle \boldsymbol{g}_{\boldsymbol{B}}, \boldsymbol{C} \rangle \\ &\frac{2}{\tau} \langle \varepsilon \boldsymbol{E}, \boldsymbol{F} \rangle + \langle \varepsilon \operatorname{grad} \boldsymbol{p}, \boldsymbol{F} \rangle - \langle \mu^{-1} \boldsymbol{B}, \operatorname{curl} \boldsymbol{F} \rangle + (1 + \gamma) \int_{\Gamma_{i}} \langle \boldsymbol{E}_{\operatorname{tan}}, \boldsymbol{F}_{\operatorname{tan}} \rangle = (\boldsymbol{g}_{\boldsymbol{E}}, \boldsymbol{F}) \\ &\frac{2}{\tau} \langle \boldsymbol{p}, \boldsymbol{q} \rangle - \langle \varepsilon \boldsymbol{E}, \operatorname{grad} \boldsymbol{q} \rangle = \langle \boldsymbol{g}_{\boldsymbol{p}}, \boldsymbol{q} \rangle \end{split}$$

Matrix form:

$$\mathcal{A}\boldsymbol{x} = \boldsymbol{F} \iff \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & \mathcal{M}_{f} \mathcal{K}_{fe} \\ -\mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} & \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & \mathcal{M}_{e} \mathcal{G}_{ev} \\ & -\mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{e} & \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix} \begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{E} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}_{\boldsymbol{B}} \\ \boldsymbol{g}_{\boldsymbol{E}} \\ \boldsymbol{g}_{\boldsymbol{p}} \end{pmatrix}.$$

- $\mathcal{M}_{f}, \mathcal{M}_{e}$, and \mathcal{M}_{v} are the mass matrices of Raviart-Thomas, Nédélec, and linear elements
- \mathcal{G}_{ev} and \mathcal{K}_{fv} are the edge-to-vertex and face-to-edge incidence matrices
- $\mathcal Z$ is the matrix associated with the impedance boundary condition

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

Well-posedness

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

 $\mathsf{Well}\text{-}\mathsf{posedness} \Rightarrow \mathcal{A}: \mathcal{H} \mapsto \mathcal{H}' \text{ is an isomorphism}$

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

 $\mathsf{Well}\text{-}\mathsf{posedness} \Rightarrow \mathcal{A}: \mathcal{H} \mapsto \mathcal{H}' \text{ is an isomorphism} \Rightarrow \text{ an isomorphism } \mathcal{B}: \mathcal{H}' \mapsto \mathcal{H} \text{ is a preconditioner}$

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

 $\mathsf{Well}\mathsf{-}\mathsf{posedness} \Rightarrow \mathcal{A}: \mathcal{H} \mapsto \mathcal{H}' \text{ is an isomorphism} \Rightarrow \text{ an isomorphism } \mathcal{B}: \mathcal{H}' \mapsto \mathcal{H} \text{ is a preconditioner}$

• Use weighted norms such that the constants in continuity and inf-sup conditions are independent of physical and discretization parameters

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

 $\mathsf{Well}\mathsf{-}\mathsf{posedness} \Rightarrow \mathcal{A}: \mathcal{H} \mapsto \mathcal{H}' \text{ is an isomorphism} \Rightarrow \text{ an isomorphism } \mathcal{B}: \mathcal{H}' \mapsto \mathcal{H} \text{ is a preconditioner}$

• Use weighted norms such that the constants in continuity and inf-sup conditions are independent of physical and discretization parameters

$$\begin{split} \text{Weighted norm:} & \| \left(\boldsymbol{B}, \boldsymbol{E}, \boldsymbol{\rho} \right) \|_{\mathcal{H}}^2 := \| \boldsymbol{B} \|_{\text{div}}^2 + \| \boldsymbol{E} \|_{\text{curl}}^2 + \| \boldsymbol{\rho} \|_{\text{grad}}^2 \\ & \| \boldsymbol{B} \|_{\text{div}}^2 := \frac{2}{\tau} \| \boldsymbol{B} \|_{\mu^{-1}}^2 + \| \operatorname{div} \boldsymbol{B} \|_{\mu^{-1}}^2, \\ & \| \boldsymbol{E} \|_{\text{curl}}^2 := \frac{2}{\tau} \| \boldsymbol{E} \|_{\varepsilon}^2 + \frac{\tau}{2} \| \operatorname{curl} \boldsymbol{E} \|_{\mu^{-1}}^2 + (1+\gamma) \| \boldsymbol{E} \|_{\Gamma_i}^2, \\ & \| \boldsymbol{\rho} \|_{\text{grad}}^2 := \frac{2}{\tau} \| \boldsymbol{\rho} \|^2 + \frac{\tau}{2} \| \operatorname{grad} \boldsymbol{\rho} \|_{\varepsilon}^2, \end{split}$$

Design robust preconditioners: $A\mathbf{x} = \mathbf{F}$ and $A : \mathcal{H} \mapsto \mathcal{H}'$, \mathcal{H} is a Hilbert space

• Follow framework (Loghin & Wathen 2004, Mardal & Winther 2011):

 $\mathsf{Well}\text{-}\mathsf{posedness} \Rightarrow \mathcal{A}: \mathcal{H} \mapsto \mathcal{H}' \text{ is an isomorphism} \Rightarrow \text{ an isomorphism } \mathcal{B}: \mathcal{H}' \mapsto \mathcal{H} \text{ is a preconditioner}$

• Use weighted norms such that the constants in continuity and inf-sup conditions are independent of physical and discretization parameters

$$\begin{split} \text{Weighted norm:} & \| \left(\boldsymbol{B}, \boldsymbol{E}, \boldsymbol{\rho} \right) \|_{\mathcal{H}}^2 := \| \boldsymbol{B} \|_{\text{div}}^2 + \| \boldsymbol{E} \|_{\text{curl}}^2 + \| \boldsymbol{\rho} \|_{\text{grad}}^2 \\ & \| \boldsymbol{B} \|_{\text{div}}^2 := \frac{2}{\tau} \| \boldsymbol{B} \|_{\mu^{-1}}^2 + \| \operatorname{div} \boldsymbol{B} \|_{\mu^{-1}}^2, \\ & \| \boldsymbol{E} \|_{\text{curl}}^2 := \frac{2}{\tau} \| \boldsymbol{E} \|_{\varepsilon}^2 + \frac{\tau}{2} \| \operatorname{curl} \boldsymbol{E} \|_{\mu^{-1}}^2 + (1+\gamma) \| \boldsymbol{E} \|_{\Gamma_i}^2, \\ & \| \boldsymbol{\rho} \|_{\text{grad}}^2 := \frac{2}{\tau} \| \boldsymbol{\rho} \|^2 + \frac{\tau}{2} \| \operatorname{grad} \boldsymbol{\rho} \|_{\varepsilon}^2, \end{split}$$

Theorem (Adler, Hu, & Z. 2016)

The linear system is well-posed w.r.t $\|\cdot\|_{\mathcal{H}}$ and the constants involved do not depend on the physical parameters μ , ε and the discretization parameters h, τ .

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, $\kappa(\mathcal{B}_{D}\mathcal{A}) \leq C$. The constant C is independent of the physical parameters μ , ε and the discretization parameters h, τ .

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, $\kappa(\mathcal{B}_{D}\mathcal{A}) \leq C$. The constant C is independent of the physical parameters μ , ε and the discretization parameters h, τ .

• Preconditioned Krylov iterative method converges uniformly

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, $\kappa(\mathcal{B}_{D}\mathcal{A}) \leq C$. The constant C is independent of the physical parameters μ , ε and the discretization parameters h, τ .

• Preconditioned Krylov iterative method converges uniformly (Ma, Hu, & Xu 2016)

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, $\kappa(\mathcal{B}_{D}\mathcal{A}) \leq C$. The constant C is independent of the physical parameters μ , ε and the discretization parameters h, τ .

- Preconditioned Krylov iterative method converges uniformly (Ma, Hu, Hu, & Xu 2016)
- What about the solenoidal property of B: div B = 0?

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, $\kappa(\mathcal{B}_{D}\mathcal{A}) \leq C$. The constant C is independent of the physical parameters μ , ε and the discretization parameters h, τ .

- Preconditioned Krylov iterative method converges uniformly (Ma, Hu, Hu, & Xu 2016)
- What about the solenoidal property of B: div B = 0?

Theorem (Adler, Hu, & Z. 2016)

If div $B^0 = 0$ and div $g_B = 0$, then all the iterations of Krylov iterative method using preconditioner \mathcal{B}_D preserves the divergence-free condition exactly, i.e. div $B^{\ell} = 0$ for $\ell = 1, 2, \cdots$

Diaongal Block Preconditioner: Riesz operator w.r.t $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, i.e. $\mathcal{B}_D : \mathcal{H}' \mapsto \mathcal{H}$, $\langle \mathcal{B}_D F, \mathbf{x} \rangle_{\mathcal{H}} = \langle F, \mathbf{x} \rangle$

$$\mathcal{B}_{D} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ 0 & \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & 0 & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}^{-1}$$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, $\kappa(\mathcal{B}_{D}\mathcal{A}) \leq C$. The constant C is independent of the physical parameters μ , ε and the discretization parameters h, τ .

- Preconditioned Krylov iterative method converges uniformly (Ma, Hu, Hu, & Xu 2016)
- What about the solenoidal property of B: div B = 0?

Theorem (Adler, Hu, & Z. 2016)

If div $B^0 = 0$ and div $g_B = 0$, then all the iterations of Krylov iterative method using preconditioner \mathcal{B}_D preserves the divergence-free condition exactly, i.e. div $B^{\ell} = 0$ for $\ell = 1, 2, \cdots$

• How about computational cost? Inverting the diagonal blocks is expensive

$$\mathcal{B}_{D} = \begin{pmatrix} \left(\frac{2}{\tau}\mathcal{M}_{f}\right)^{-1} & 0 & 0\\ 0 & \left(\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z}\right)^{-1} & 0\\ 0 & 0 & \left(\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{M}_{v}\mathcal{G}_{ev} + \frac{2}{\tau}\mathcal{M}_{v}\right)^{-1} \end{pmatrix}$$

$$\mathcal{B}_{D} = \begin{pmatrix} \left(\frac{2}{\tau}\mathcal{M}_{f}\right)^{-1} & 0 & 0\\ 0 & \left(\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z}\right)^{-1} & 0\\ 0 & 0 & \left(\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{M}_{v}\mathcal{G}_{ev} + \frac{2}{\tau}\mathcal{M}_{v}\right)^{-1} \end{pmatrix}$$

Make it practical: approximate each diagonal block

$$\mathcal{B}_D = egin{pmatrix} \mathcal{Q}_{m{B}} & 0 & 0 \ 0 & \mathcal{Q}_{m{E}} & 0 \ 0 & 0 & \mathcal{Q}_{m{p}} \end{pmatrix}$$

Make it practical: approximate each diagonal block

$$\mathcal{B}_D = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{B}} & 0 & 0\\ 0 & \mathcal{Q}_{\boldsymbol{E}} & 0\\ 0 & 0 & \mathcal{Q}_{\boldsymbol{p}} \end{pmatrix}$$

Make it practical: approximate each diagonal block

It is easy to verify that κ(B_DA) ≤ C

$$\mathcal{B}_D = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{B}} & 0 & 0\\ 0 & \mathcal{Q}_{\boldsymbol{E}} & 0\\ 0 & 0 & \mathcal{Q}_{\boldsymbol{p}} \end{pmatrix}$$

Make it practical: approximate each diagonal block

- It is easy to verify that κ(B_DA) ≤ C
- **B** is no longer solenoidal! (fix?)

$$\mathcal{B}_D = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{B}} & 0 & 0\\ 0 & \mathcal{Q}_{\boldsymbol{E}} & 0\\ 0 & 0 & \mathcal{Q}_{\boldsymbol{p}} \end{pmatrix}$$

Make it practical: approximate each diagonal block

- It is easy to verify that $\kappa(\mathcal{B}_D\mathcal{A}) \leq C$
- **B** is no longer solenoidal! (fix?)

Restore the solenoidal property: $\mathcal{Q}_{\pmb{B}} = \left(rac{2}{ au} \mathcal{M}_f
ight)^{-1}$

$$\mathcal{B}_D = egin{pmatrix} \left(egin{array}{ccc} rac{2}{ au} \mathcal{M}_f
ight)^{-1} & 0 & 0 \ 0 & \mathcal{Q}_{oldsymbol{E}} & 0 \ 0 & 0 & \mathcal{Q}_{oldsymbol{p}} \end{pmatrix}$$

Make it practical: approximate each diagonal block

- It is easy to verify that $\kappa(\mathcal{B}_D\mathcal{A}) \leq C$
- **B** is no longer solenoidal! (fix?)

Restore the solenoidal property: $Q_{B} = \left(\frac{2}{\tau} \mathcal{M}_{f}\right)^{-1}$

$$\mathcal{B}_D = egin{pmatrix} \left(egin{array}{c} rac{2}{ au} \mathcal{M}_f
ight)^{-1} & 0 & 0 \ 0 & \mathcal{Q}_{oldsymbol{E}} & 0 \ 0 & 0 & \mathcal{Q}_{oldsymbol{
ho}} \end{pmatrix}$$

Make it practical: approximate each diagonal block

- It is easy to verify that κ(B_DA) ≤ C
- B is no longer solenoidal! (fix?)

Restore the solenoidal property: $Q_{B} = \left(\frac{2}{\tau} \mathcal{M}_{f}\right)^{-1}$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, then $\kappa(\mathcal{B}_{\mathcal{D}}\mathcal{A}) \leq C$. Moreover, the Krylov methods using preconditioner $\mathcal{B}_{\mathcal{D}}$ preserves div $\mathcal{B}^{\ell} = 0$, for $\ell = 1, 2, \cdots$.

$$\mathcal{B}_D = egin{pmatrix} \left(\left(rac{2}{ au} \mathcal{M}_f
ight)^{-1} & 0 & 0 \ 0 & \mathcal{Q}_{oldsymbol{E}} & 0 \ 0 & 0 & \mathcal{Q}_{oldsymbol{
ho}} \end{pmatrix} \ \end{pmatrix}$$

Make it practical: approximate each diagonal block

- It is easy to verify that $\kappa(\mathcal{B}_D\mathcal{A}) \leq C$
- **B** is no longer solenoidal! (fix?)

Restore the solenoidal property: $Q_{B} = \left(\frac{2}{\tau} \mathcal{M}_{f}\right)^{-1}$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, then $\kappa(\mathcal{B}_D\mathcal{A}) \leq C$. Moreover, the Krylov methods using preconditioner \mathcal{B}_D preserves div $\mathcal{B}^\ell = 0$, for $\ell = 1, 2, \cdots$.

Implementation issues:

- Q_p : algebraic multigrid (AMG); Q_E : Hiptmair-Xu (HX) preconditioner
- No need to compute \mathcal{M}_{f}^{-1} , as seen below:

$$\mathbf{v}_{\mathbf{B}}^{m} = \left(\frac{\tau}{2}\mathcal{M}_{f}\right)^{-1}\left(\frac{\tau}{2}\mathcal{M}_{f}\mathbf{v}_{\mathbf{B}}^{m-1} + \mathcal{M}_{f}\mathcal{K}_{fe}\mathbf{v}_{\mathbf{B}}^{m-1}\right) = \mathbf{v}_{\mathbf{B}}^{m-1} + \frac{2}{\tau}\mathcal{K}_{fe}\mathbf{v}_{\mathbf{B}}^{m-1}$$

Block Triangular Preconditioners for ADS

Block triangular preconditioner: Riesz operator + lower/upper triangular

$$\mathcal{B}_{L} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & 0 & 0\\ -\mathcal{K}_{fe}^{\tau}\mathcal{M}_{f} & \frac{\tau}{2}\mathcal{K}_{fe}^{\tau}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & -\mathcal{G}_{ev}^{\tau}\mathcal{M}_{e} & \frac{\tau}{2}\mathcal{G}_{ev}^{\tau}\mathcal{M}_{v}\mathcal{G}_{ev} + \frac{2}{\tau}\mathcal{M}_{v} \end{pmatrix}^{-1}$$

Block Triangular Preconditioners for ADS

Block triangular preconditioner: Riesz operator + lower/upper triangular

$$\mathcal{B}_{L} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & 0 & 0\\ -\mathcal{K}_{fe}^{T}\mathcal{M}_{f} & \frac{\tau}{2}\mathcal{K}_{fe}^{T}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z} & 0\\ 0 & -\mathcal{G}_{ev}^{T}\mathcal{M}_{e} & \frac{\tau}{2}\mathcal{G}_{ev}^{T}\mathcal{M}_{v}\mathcal{G}_{ev} + \frac{2}{\tau}\mathcal{M}_{v} \end{pmatrix}^{-1}$$

Remarks:

Block triangular preconditioner: Riesz operator + lower/upper triangular

$$\mathcal{B}_{L} = \begin{pmatrix} \mathcal{Q}_{\boldsymbol{B}}^{-1} & 0 & 0\\ -\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f} & \mathcal{Q}_{\boldsymbol{E}}^{-1} & 0\\ 0 & -\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix}^{-1}$$

Remarks:

• Reduce cost: approximate diagonal blocks

Block triangular preconditioner: Riesz operator + lower/upper triangular

$$\mathcal{B}_{L} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ -\mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} & \mathcal{Q}_{\mathbf{E}}^{-1} & 0\\ 0 & -\mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix}^{-1}$$

Remarks:

- Reduce cost: approximate diagonal blocks
- Keep **B** solenoidal: $Q_{\mathbf{B}} = \left(\frac{2}{\tau}\mathcal{M}_{f}\right)^{-1}$

Block triangular preconditioner: Riesz operator + lower/upper triangular

$$\mathcal{B}_{L} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ -\mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} & \mathcal{Q}_{\mathbf{E}}^{-1} & 0\\ 0 & -\mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix}^{-1}$$

Remarks:

- Reduce cost: approximate diagonal blocks
- Keep **B** solenoidal: $Q_{\mathbf{B}} = \left(\frac{2}{\tau}\mathcal{M}_{f}\right)^{-1}$
- Prove robustness: replace $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ by $\langle \cdot, \cdot \rangle_{\mathcal{B}_D}$

Block triangular preconditioner: Riesz operator + lower/upper triangular

$$\mathcal{B}_{L} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & 0 & 0\\ -\mathcal{K}_{fe}^{T} \mathcal{M}_{f} & \mathcal{Q}_{E}^{-1} & 0\\ 0 & -\mathcal{G}_{ev}^{T} \mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix}^{-1}$$

Remarks:

- Reduce cost: approximate diagonal blocks
- Keep **B** solenoidal: $Q_{\mathbf{B}} = \left(\frac{2}{\tau}\mathcal{M}_{f}\right)^{-1}$
- Prove robustness: replace $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ by $\langle \cdot, \cdot \rangle_{\mathcal{B}_D}$

Theorem (Adler, Hu, & Z. 2016)

If the linear system is well-posed, we have the following Field-of-Values equivalence: $\gamma \leq \frac{\langle \mathbf{x}, \mathcal{B}_L \mathcal{A} \mathbf{x} \rangle_{\mathcal{B}_D}}{\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{B}_D}}, \quad \frac{\|\mathcal{B}_L \mathcal{A} \mathbf{x}\|_{\mathcal{B}_D}}{\|\mathbf{x}\|_{\mathcal{B}_D}} \leq \Gamma,$

which implies preconditioned GMRes converges uniformly. Moreover, PGMRes also preserves div $\mathbf{B}^{\ell} = 0$ for $\ell = 1, 2, \cdots$.

Block Factroziation

Matrix in the block form:

$$\mathcal{A} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & \mathcal{M}_{f} \mathcal{K}_{fe} \\ -\mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} & \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & \mathcal{M}_{e} \mathcal{G}_{ev} \\ & -\mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{e} & \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}$$

Block Factroziation

Matrix in the block form:

$$\mathcal{A} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & \mathcal{M}_{f} \mathcal{K}_{fe} \\ -\mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} & \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & \mathcal{M}_{e} \mathcal{G}_{ev} \\ -\mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{e} & \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}$$

In general, we can factorize the block matrix: $\mathcal{A}=\mathcal{LDU}$

Block Factroziation

Matrix in the block form:

$$\mathcal{A} = \begin{pmatrix} \frac{2}{\tau} \mathcal{M}_{f} & \mathcal{M}_{f} \mathcal{K}_{fe} \\ -\mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} & \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} & \mathcal{M}_{e} \mathcal{G}_{ev} \\ -\mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{e} & \frac{2}{\tau} \mathcal{M}_{v} \end{pmatrix}$$

In general, we can factorize the block matrix: $\mathcal{A}=\mathcal{LDU}$

- Schur complements in $\ensuremath{\mathcal{D}}$ are defined recursively and usually dense
- ${\cal L}$ and ${\cal U}$ contain the inverses of Schur complements, which usually are difficult to compute
- Sparse and good approximations of the Schur complements are not easy to find

Continuous level	Discrete level

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 ext{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 \text{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{\Gamma_i} \langle \boldsymbol{n}\wedge \boldsymbol{E}, \boldsymbol{n}\wedge \text{grad } \boldsymbol{p} angle = 0$	

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 \text{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E},{m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Structure-preserving discretization:

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 \text{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E}, {m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Exact Block Factorization: $\mathcal{A} = \mathcal{LDU}$

$$\mathcal{L} = \begin{pmatrix} \mathcal{I} & & \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} & \\ & -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \ \mathcal{D} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & & \\ & \mathcal{S}_{\mathsf{E}} & \\ & & \mathcal{S}_{\mathsf{P}} \end{pmatrix}, \ \mathcal{U} = \begin{pmatrix} \mathcal{I} & \frac{\tau}{2}\mathcal{K}_{fe} & \\ & \mathcal{I} & \frac{\tau}{2}\mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

Structure-preserving discretization:

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 \text{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E},{m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Exact Block Factorization: $\mathcal{A} = \mathcal{LDU}$

$$\mathcal{L} = \begin{pmatrix} \mathcal{I} & & \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} & \\ & -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \ \mathcal{D} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & & \\ & \mathcal{S}_{\mathsf{E}} & \\ & & \mathcal{S}_{\mathsf{p}} \end{pmatrix}, \ \mathcal{U} = \begin{pmatrix} \mathcal{I} & \frac{\tau}{2}\mathcal{K}_{fe} & \\ & \mathcal{I} & \frac{\tau}{2}\mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

where

$$S_{E} = \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z}$$
$$S_{p} = \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v}$$

Structure-preserving discretization:

Continuous level	Discrete level
$\operatorname{curl}\operatorname{grad}=0$	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 \text{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E}, {m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Exact Block Factorization: $\mathcal{A} = \mathcal{LDU}$

$$\mathcal{L} = \begin{pmatrix} \mathcal{I} & & \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} & \\ & -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \ \mathcal{D} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & & \\ & \mathcal{S}_{\mathsf{E}} & \\ & & \mathcal{S}_{\mathsf{p}} \end{pmatrix}, \ \mathcal{U} = \begin{pmatrix} \mathcal{I} & \frac{\tau}{2}\mathcal{K}_{fe} & \\ & \mathcal{I} & \frac{\tau}{2}\mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

where

$$S_{E} = \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z}$$
$$S_{p} = \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v}$$

Remark: thanks to the structure-preserving discretization

55 / 63

Structure-preserving discretization:

Continuous level	Discrete level
curlgrad=0	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0$ or $\mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E},{m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Exact Block Factorization: $\mathcal{A} = \mathcal{LDU}$

$$\mathcal{L} = \begin{pmatrix} \mathcal{I} & & \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} & \\ & -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \ \mathcal{D} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & & \\ & \mathcal{S}_{\mathsf{E}} & \\ & & \mathcal{S}_{\mathsf{p}} \end{pmatrix}, \ \mathcal{U} = \begin{pmatrix} \mathcal{I} & \frac{\tau}{2}\mathcal{K}_{fe} & \\ & \mathcal{I} & \frac{\tau}{2}\mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

where

$$S_{E} = \frac{\tau}{2} \mathcal{K}_{fe}^{T} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + 2$$
$$S_{p} = \frac{\tau}{2} \mathcal{G}_{ev}^{T} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v}$$

Remark: thanks to the structure-preserving discretization

• Schur complements S_E and S_p are computed exactly and they are sparse

Structure-preserving discretization:

Continuous level	Discrete level
curlgrad=0	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0 \text{ or } \mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E},{m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Exact Block Factorization: $\mathcal{A} = \mathcal{LDU}$

$$\mathcal{L} = \begin{pmatrix} \mathcal{I} & & \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} & \\ & -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \ \mathcal{D} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & & \\ & \mathcal{S}_{\mathsf{E}} & \\ & & \mathcal{S}_{\mathsf{p}} \end{pmatrix}, \ \mathcal{U} = \begin{pmatrix} \mathcal{I} & \frac{\tau}{2}\mathcal{K}_{fe} & \\ & \mathcal{I} & \frac{\tau}{2}\mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

where

$$S_{E} = \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} \quad \Longleftrightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} + S_{p} = \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \qquad \Longleftrightarrow \quad \operatorname{div} \varepsilon \operatorname{grad} + I$$

Remark: thanks to the structure-preserving discretization

• Schur complements S_E and S_p are computed exactly and they are sparse

Structure-preserving discretization:

Continuous level	Discrete level
curlgrad=0	$\mathcal{K}_{fe}\mathcal{G}_{ev} = 0$ or $\mathcal{G}_{ev}^{T}\mathcal{K}_{fe}^{T} = 0$
$(1+\gamma)\int_{{\sf \Gamma}_i}\langle {m n}\wedge {m E},{m n}\wedge { m grad} p angle=0$	$\mathcal{G}_{ev}^T \mathcal{Z} = 0 \text{ or } \mathcal{Z}^T \mathcal{G}_{ev} = 0$

Exact Block Factorization: $\mathcal{A} = \mathcal{LDU}$

$$\mathcal{L} = \begin{pmatrix} \mathcal{I} & & \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} & \\ & -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \ \mathcal{D} = \begin{pmatrix} \frac{2}{\tau}\mathcal{M}_{f} & & \\ & \mathcal{S}_{\mathsf{E}} & \\ & & \mathcal{S}_{\mathsf{p}} \end{pmatrix}, \ \mathcal{U} = \begin{pmatrix} \mathcal{I} & \frac{\tau}{2}\mathcal{K}_{fe} & \\ & \mathcal{I} & \frac{\tau}{2}\mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

where

$$S_{E} = \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} \mathcal{M}_{f} \mathcal{K}_{fe} + \frac{2}{\tau} \mathcal{M}_{e} + \mathcal{Z} \quad \Longleftrightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} + S_{\rho} = \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} \mathcal{M}_{v} \mathcal{G}_{ev} + \frac{2}{\tau} \mathcal{M}_{v} \qquad \Longleftrightarrow \quad \operatorname{div} \varepsilon \operatorname{grad} + I$$

Remark: thanks to the structure-preserving discretization

- Schur complements S_E and S_p are computed exactly and they are sparse
- We can find good approximations to the Schur complements

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \text{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \mathbf{x}, \mathbf{x} \rangle$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Block Preconditioners: according to the factorization $\mathcal{A} = \mathcal{LDU}$

• Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_{L} = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_{L} = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_{\mathcal{U}} = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_{L} = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_U = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$
- Lower/Upper triangular: $\mathcal{M}_{LU} = \mathcal{U}^{-1}\mathcal{QL}^{-1} (\approx (\mathcal{LDU})^{-1})$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Block Preconditioners: according to the factorization $\mathcal{A} = \mathcal{LDU}$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_{L} = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_{\mathcal{U}} = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$
- Lower/Upper triangular: $\mathcal{M}_{LU} = \mathcal{U}^{-1}\mathcal{QL}^{-1} (\approx (\mathcal{LDU})^{-1})$

Theorem (Adler, Hu, & Z. 2016)

If \mathcal{Q} is spectrally equivalent to \mathcal{D} , we have

$$\lambda(\mathcal{M}_{L}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \lambda(\mathcal{M}_{U}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \text{and} \ \lambda(\mathcal{M}_{LU}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}]$$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Block Preconditioners: according to the factorization $\mathcal{A} = \mathcal{LDU}$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_L = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_{\mathcal{U}} = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$
- Lower/Upper triangular: $\mathcal{M}_{LU} = \mathcal{U}^{-1}\mathcal{QL}^{-1} \ (\approx (\mathcal{LDU})^{-1})$

Theorem (Adler, Hu, & Z. 2016)

If \mathcal{Q} is spectrally equivalent to \mathcal{D} , we have

$$\lambda(\mathcal{M}_{L}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \lambda(\mathcal{M}_{U}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \text{and} \ \lambda(\mathcal{M}_{LU}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}]$$

Implementation:

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Block Preconditioners: according to the factorization $\mathcal{A}=\mathcal{LDU}$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_{L} = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_U = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$
- Lower/Upper triangular: $\mathcal{M}_{LU} = \mathcal{U}^{-1}\mathcal{QL}^{-1} \ (\approx (\mathcal{LDU})^{-1})$

Theorem (Adler, Hu, & Z. 2016)

If \mathcal{Q} is spectrally equivalent to \mathcal{D} , we have

$$\lambda(\mathcal{M}_{L}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \lambda(\mathcal{M}_{U}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \text{and} \ \lambda(\mathcal{M}_{LU}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}]$$

Implementation:

•
$$\mathcal{L}^{-1} = \begin{pmatrix} \mathcal{I} & & \\ \frac{\tau}{2} \mathcal{K}_{fe}^{T} & \mathcal{I} & \\ & \frac{\tau}{2} \mathcal{G}_{ev}^{T} & \mathcal{I} \end{pmatrix}$$
, $\mathcal{U}^{-1} = \begin{pmatrix} \mathcal{I} & -\frac{\tau}{2} \mathcal{K}_{fe} & \\ & \mathcal{I} & -\frac{\tau}{2} \mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Block Preconditioners: according to the factorization $\mathcal{A} = \mathcal{LDU}$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_L = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_{\mathcal{U}} = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$
- Lower/Upper triangular: $\mathcal{M}_{LU} = \mathcal{U}^{-1}\mathcal{QL}^{-1} \ (\approx (\mathcal{LDU})^{-1})$

Theorem (Adler, Hu, & Z. 2016)

If \mathcal{Q} is spectrally equivalent to \mathcal{D} , we have

$$\lambda(\mathcal{M}_{L}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \lambda(\mathcal{M}_{U}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \text{and} \ \lambda(\mathcal{M}_{LU}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}]$$

Implementation:

•
$$\mathcal{L}^{-1} = \begin{pmatrix} \mathcal{I} & \\ \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} \\ & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \quad \mathcal{U}^{-1} = \begin{pmatrix} \mathcal{I} & -\frac{\tau}{2} \mathcal{K}_{fe} & \\ & \mathcal{I} & -\frac{\tau}{2} \mathcal{G}_{ev} \\ & & & \mathcal{I} \end{pmatrix}$$

• Q_B : Jacobi; Q_E : HX-preconditioner; Q_p : AMG

Spectral equivalent approximation of \mathcal{D}^{-1} : $\mathcal{Q} = \operatorname{diag}(\mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{P}})$ $c_1 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathcal{D}^{-1} \, \mathbf{x}, \mathbf{x} \rangle \leq c_2 \langle \mathcal{Q} \, \mathbf{x}, \mathbf{x} \rangle$

Block Preconditioners: according to the factorization $\mathcal{A} = \mathcal{LDU}$

- Diagonal: $\mathcal{M}_D = \mathcal{Q} \ (\approx \mathcal{D}^{-1})$ (this actually is \mathcal{B}_D)
- Lower triangular: $\mathcal{M}_L = \mathcal{QL}^{-1} \ (\approx (\mathcal{LD})^{-1})$
- Upper triangular: $\mathcal{M}_U = \mathcal{U}^{-1}\mathcal{Q} \ (\approx (\mathcal{D}\mathcal{U})^{-1})$
- Lower/Upper triangular: $\mathcal{M}_{LU} = \mathcal{U}^{-1}\mathcal{QL}^{-1} \ (\approx (\mathcal{LDU})^{-1})$

Theorem (Adler, Hu, & Z. 2016)

If \mathcal{Q} is spectrally equivalent to \mathcal{D} , we have

$$\lambda(\mathcal{M}_{L}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \lambda(\mathcal{M}_{U}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}], \ \textit{and} \ \lambda(\mathcal{M}_{LU}\mathcal{A}) \in [c_{2}^{-1}, c_{1}^{-1}]$$

Implementation:

•
$$\mathcal{L}^{-1} = \begin{pmatrix} \mathcal{I} & & \\ \frac{\tau}{2} \mathcal{K}_{fe}^{\mathsf{T}} & \mathcal{I} \\ & \frac{\tau}{2} \mathcal{G}_{ev}^{\mathsf{T}} & \mathcal{I} \end{pmatrix}, \quad \mathcal{U}^{-1} = \begin{pmatrix} \mathcal{I} & -\frac{\tau}{2} \mathcal{K}_{fe} & \\ & \mathcal{I} & -\frac{\tau}{2} \mathcal{G}_{ev} \\ & & \mathcal{I} \end{pmatrix}$$

- Q_B : Jacobi; Q_E : HX-preconditioner; Q_p : AMG
- Keep **B** solenoidal: $Q_{\mathbf{B}} = \left(\frac{2}{\tau}\mathcal{M}_{f}\right)^{-1}$

Diagonal case: two approachs are equivalent, i.e. $\mathcal{B}_D = \mathcal{M}_D$

Diagonal case: two approachs are equivalent, i.e. $\mathcal{B}_D=\mathcal{M}_D$

Triangular case: use lower triangular as an example

$$\mathcal{B}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\mathcal{K}_{fe}^{T}\mathcal{M}_{f} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\mathcal{G}_{ev}^{T}\mathcal{M}_{e} & \mathcal{Q}_{\rho}^{-1} \end{pmatrix} \text{ and } \mathcal{M}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{T}\mathcal{Q}_{B}^{-1} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\frac{\tau}{2}\mathcal{G}_{ev}^{T}\mathcal{Q}_{E}^{-1} & \mathcal{Q}_{\rho}^{-1} \end{pmatrix}$$

Diagonal case: two approachs are equivalent, i.e. $\mathcal{B}_D=\mathcal{M}_D$

Triangular case: use lower triangular as an example

$$\mathcal{B}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\mathcal{K}_{fe}^{T}\mathcal{M}_{f} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\mathcal{G}_{ev}^{T}\mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix} \text{ and } \mathcal{M}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{T}\mathcal{Q}_{B}^{-1} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\frac{\tau}{2}\mathcal{G}_{ev}^{T}\mathcal{Q}_{E}^{-1} & \mathcal{Q}_{p}^{-1} \end{pmatrix}$$

• If
$$\mathcal{Q}_B^{-1} = \frac{2}{\tau} \mathcal{M}_f$$
 and $\mathcal{Q}_E^{-1} = \mathcal{S}_E$,

$$-\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{Q}_{\mathsf{B}}^{-1} = -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\left(\frac{2}{\tau}\mathcal{M}_{f}\right) = -\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}$$
$$-\frac{\tau}{2}\mathcal{G}_{\mathsf{ev}}^{\mathsf{T}}\mathcal{Q}_{\mathsf{E}}^{-1} = -\frac{\tau}{2}\mathcal{G}_{\mathsf{ev}}^{\mathsf{T}}\mathcal{S}_{\mathsf{E}} = -\frac{\tau}{2}\mathcal{G}_{\mathsf{ev}}^{\mathsf{T}}\left(\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z}\right) = -\mathcal{G}_{\mathsf{ev}}^{\mathsf{T}}\mathcal{M}_{e}$$

Diagonal case: two approachs are equivalent, i.e. $\mathcal{B}_D=\mathcal{M}_D$

Triangular case: use lower triangular as an example

$$\mathcal{B}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\mathcal{K}_{fe}^{T}\mathcal{M}_{f} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\mathcal{G}_{ev}^{T}\mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix} \text{ and } \mathcal{M}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\frac{\tau}{2}\mathcal{K}_{fe}^{T}\mathcal{Q}_{B}^{-1} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\frac{\tau}{2}\mathcal{G}_{ev}^{T}\mathcal{Q}_{E}^{-1} & \mathcal{Q}_{p}^{-1} \end{pmatrix}$$

• If
$$\mathcal{Q}_B^{-1} = \frac{2}{\tau} \mathcal{M}_f$$
 and $\mathcal{Q}_E^{-1} = \mathcal{S}_E$,

$$-\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{Q}_{\mathbf{B}}^{-1} = -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\left(\frac{2}{\tau}\mathcal{M}_{f}\right) = -\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}$$
$$-\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{Q}_{\mathbf{E}}^{-1} = -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{S}_{\mathbf{E}} = -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\left(\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z}\right) = -\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{M}_{e}$$
$$\mathsf{then} \ \mathcal{B}_{\boldsymbol{L}} = \mathcal{M}_{\boldsymbol{L}}$$

Diagonal case: two approachs are equivalent, i.e. $\mathcal{B}_D=\mathcal{M}_D$

Triangular case: use lower triangular as an example

$$\mathcal{B}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\mathcal{K}_{fe}^{\tau} \mathcal{M}_{f} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\mathcal{G}_{ev}^{\tau} \mathcal{M}_{e} & \mathcal{Q}_{p}^{-1} \end{pmatrix} \text{ and } \mathcal{M}_{L}^{-1} = \begin{pmatrix} \mathcal{Q}_{B}^{-1} & 0 & 0 \\ -\frac{\tau}{2} \mathcal{K}_{fe}^{\tau} \mathcal{Q}_{B}^{-1} & \mathcal{Q}_{E}^{-1} & 0 \\ 0 & -\frac{\tau}{2} \mathcal{G}_{ev}^{\tau} \mathcal{Q}_{E}^{-1} & \mathcal{Q}_{p}^{-1} \end{pmatrix}$$

• If
$$\mathcal{Q}_B^{-1} = \frac{2}{\tau} \mathcal{M}_f$$
 and $\mathcal{Q}_E^{-1} = \mathcal{S}_E$,

$$-\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{Q}_{\mathbf{B}}^{-1} = -\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\left(\frac{2}{\tau}\mathcal{M}_{f}\right) = -\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}$$
$$-\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{Q}_{\mathbf{E}}^{-1} = -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{S}_{\mathbf{E}} = -\frac{\tau}{2}\mathcal{G}_{ev}^{\mathsf{T}}\left(\frac{\tau}{2}\mathcal{K}_{fe}^{\mathsf{T}}\mathcal{M}_{f}\mathcal{K}_{fe} + \frac{2}{\tau}\mathcal{M}_{e} + \mathcal{Z}\right) = -\mathcal{G}_{ev}^{\mathsf{T}}\mathcal{M}_{e}$$
$$\text{then } \mathcal{B}_{L} = \mathcal{M}_{L}$$

• In general, \mathcal{B}_L and \mathcal{M}_L are different

user: adleth Fri Aug 25 17:16:39:2011

Parameters for the Maxwell's system: $\varepsilon = \mu^{-1} = 1$ and $\tau = 0.1$

Numerical Experiments

Performance of Preconditioners

(1) Preconditioner \mathcal{B}_D						
	1/8	1/16	1/32	1/64		
0.2	21	26	28	28		
0.1	14	22	26	27		
0.05	10	16	23	25		
0.025	7	10	17	23		
(2) Preconditioner \mathcal{B}_L						
	1/8	1/16	1/32	1/64		
0.2	7	8	10	10		
0.1	6	7	8	9		
0.05	5	6	7	8		
0.025	5	5	6	7		
(3) Preconditioner \mathcal{B}_U						
	1/8	1/16	1/32	1/64		
0.2	7	8	9	10		
0.1	6	7	8	9		
0.05	5	6	8	8		
0.025	4	5	6	8		

(4) Preconditioner \mathcal{M}_L

	1/8	$^{1/16}$	1/32	1/64			
0.2	5	6	6	8			
0.1	5	7	7	7			
0.05	5	5	6	7			
0.025	5	5	5	6			
(5	(5) Prconditioner \mathcal{M}_U						
	1/8	1/16	1/32	1/64			
0.2	5	7	8	8			
0.1	5	6	7	8			
0.05	5	6	6	7			
0.025	4	5	6	6			
(6) Preconditioner \mathcal{M}_{LU}							
	1/8	1/16	1/32	1/64			
0.2	4	4	5	5			
0.1	4	4	4	5			
0.05	4	4	4	4			
0.025	3	4	4	4			

Numerical Experiments

Performance of Preconditioners: jumps in ε and $\mu_{\rm p}$

	10-6	10^{-4}	10^{-2}	1	10 ²	10 ⁴	10 ⁶
\mathcal{B}_D	28	28	27	26	27	22	16
\mathcal{B}_L	9	9	9	8	8	8	8
\mathcal{B}_U	9	9	8	8	8	8	8
\mathcal{M}_L	7	7	7	7	7	7	7
\mathcal{M}_U	7	7	7	7	6	6	6
\mathcal{M}_{LU}	5	4	4	4	4	4	4

Table: Jumps in ε : $h = \frac{1}{32}$ and $\tau = 0.1$

Table: Jumps in μ : h = 1/32 and $\tau = 0.1$

	10-6	10^{-4}	10^{-2}	1	10 ²	104	106
\mathcal{B}_D	17	22	27	26	26	26	26
\mathcal{B}_L	11	11	9	8	8	8	8
\mathcal{B}_U	10	10	9	8	8	8	8
\mathcal{M}_L	9	8	7	7	7	7	7
\mathcal{M}_U	7	7	7	7	7	7	7
\mathcal{M}_{LU}	5	5	5	4	4	4	5

Numerical Experiments

Computational Complexity

Parameters: $\varepsilon = \mu^{-1} = 1$ and $\tau = 0.1$ Average CPU time (seconds) over 20 time steps

	1/8	1/16	1/32	1/64
\mathcal{B}_L	0.13	1.05	12.38	165.23
\mathcal{B}_U	0.12	1.03	11.79	158.55
\mathcal{M}_L	0.12	0.96	10.72	138.83
\mathcal{M}_U	0.12	1.00	11.65	159.71
\mathcal{M}_{LU}	0.11	0.95	9.70	127.80

Conclusions

- We presented structure-preserving and stable finite element methods for approximate solutions to the systems of coupled PDEs (poroelasticity and Maxwell's system)
- We designed family of operator preconditioners based on the well-posedness of the discrete systems (discretized Biot's model and Maxwell's system)
- We have shown robustness of the preconditioners with respect to the physical and discretization parameters
- We also presented a novel approach for the analysis for the sequential-implicit (splitting) schemes for poroelasticity.

Software

All numerical experiments in this talk are done using the HAZMATH FE and graph library: https://bitbucket.org/XiaozheHu/hazmath/wiki/Home

The support from the National Science Foundation via awards DMS-1522615 and DMS-1720114 is gratefully acknowledged.

Thank You!

