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The linear periodic Shrodinger equation

e In dimension 1, the linear periodic Schrodinger equation reads

Opu = i@%u, w(0,2) = ug(x), (1)

where i = /-1, teR, £ € T=R|(27Z) and v : R x T — C.
e For ug € C°°(T) the solution of (1) is given by the exponential sum

oz 2 . e
u(t,z) = > e wn® g 7o (n),
nes

where ug(n) is the n'th Fourier coefficient of ug(x), i.e.

—~ 1 o —inx
ug(n) = Z/O e ug(x) dx.

e Observe that u(t, z) is 2m-periodic in time : u(t + 27, z) = u(t, z).



Conservation of the Sobolev norms

e If a function v : T — C has a Fourier expansion

u(z) = ) e i(n)

nez
then for s € R, the Sobolev norm H?® of u is defined by

lull%rs = 3 (1 +n2)laln)|?.
nez
For s = 0, we recover an equivalent to the L2 norm. We also have

lull gy = llull e + 1wl 2, llullgz = llullz + 1wl 2 + a2, ete.

e It is now clear that the above solution of the linear periodic Schrodinger
equation satisfies

lult, ) s = lluollgs,  VteR. (2)

e We can therefore uniquely extend the solution map ug(x) — u(t, x)
to a continuous map from HS(T) to C(R; H%(T)), s € R. Moreover
the HS(T) norm is preserved, i.e. we have (2).



The linear Shrodinger equation on the line

e Consider now the 1d linear Schrodinger equation on the real line
Oru = i@gu, u(0,2) =ug(x) teR, zeR. (3)

If ug is in the Schwartz class then the solution is given by

1 : :

u(t,@) = - [ 7 g €)de,

27 JR

where ug(€), € € R is the Fourier transform of ug, defined by
i5(§) = [ e "ug(a)da.
e T he Sobolev norm H?® of functions on R is now defined by
113 = [ (14 D171z

Since

u(t, ) (€) = et (&) = Ju(t, )(©)| = |ap(©)]
the solution of (3) satisfies

luCt, ) s = lluollas -



T he dispersion

e By applying a stationary phase estimate to

u(t, z) = % [ e e (6 e,

we obtain that there is ¢ € C and C > 0 such that for every t > 1,
every x € R,

e’ 4t

Vit

3
u(t,2) — e @o(w/20)| < Ct 3 lzuol| 2
In particular, for t > 1,
1
lu(t,z)| < C(ug)t 2, VzeR.

e T herefore the solution disperses keeping the H® norms conserved.
e Another manifestation of the dispersion is the Strichartz estimate

lu(t, )l Lerxr) < Clluo(@)| 2(R) -



A fully non linear model

eConsider the equation
Oru = —i|u|2u, w(0,x) = ug(x).
e For ug € L?, the solution is given by :
u(t,z) = e itluo(2)]? ug(x) .
e T hen
duu(t, ) = e~ 0O (9,ug(2) — itug(x) Bz (luo() ).

e Therefore for ug(x) such that |ug(x)| is not a constant, there exists
C >0 and A >1 such that fort > A,

i.e. the H1 norm grows in time ! Similarly for H%, s > 0O initial data

|u(t, )| s > Ct°.



The 1d Nonlinear Schrodinger equation (NLS)

e \We considered so far the linear model
Oy = i@%u
and the fully nonlinear model
Au = —i|u|?u

e The 1d NLS is obtained when one takes into account both effects :

Au = i 02u — i|ul’u
or equvalently

10pu + 8323u = |ul?u.

e For the linear model the Sobolev noms H?® of the solutions remain
bounded while for the fully nonlinear model they grow as far as s > O.
e The question we discuss today is which effect dominates in
the context of NLS.



Global well-posedness and basic conservation laws for NLS

e Thanks to the 1d Sobolev emebedding H! ¢ L which makes that
in 1d the Sobolev space H is an algebra, we can easily solve locally
in H! the initial value problem for

10pu + 8£u = |ul?u. (4)

e Multiply (4) with u, i0:u, integrate over x and take the imaginary
part. It comes :

%llu@, MNZz =0, %(Ilaxu(t, IIZ2 + %nu(t, ~>H‘£4) =0.
e One can deduce the second conservation law as the Hamiltonian
conservation resulting from the Hamiltonian formulation of NLS.
e [ herefore, for s > 1 we can extend globally in time the local solu-
tions. Moreover, the L2 and the H! norms of the solutions remain
bounded in time. Therefore, concerning the H1 norm, the linear ef-
fect dominates.
Question : What about the H®%, s > 1 norms 7
Remark : The question of the growth of the Sobolev norms may be
seen as a competition between the kinetic and the potential energies.

-



Higher order conservation laws for 1d NLS

e Using the Lax representation of the 1d NLS, Zakharov-Shabat
(1972) obtained that if w is an H®, s > 2 solution of

O + 02u = |ul?u

then
@(IlaquLg + 2[|Re(Oruw)||72 + 3||udzull72 + 5||u||L6) —0.

Here x can be both in T or R.

e Therefore the H? norms of the solutions remain bounded in time.
e Similarly one gets uniform in time bounds for the H® norms,
s=3,4,b,....

e Recent work (2016) by Koch-Tataru extends these bounds for all
s> 0 in the case x € R (for x € T, there is an earlier work by Grebert-
Kappeler).



Conclusion of the 1d analysis

e In summary, for the 1d NLS both on R and T, the linear effect dom-
inates concerning the bounds on the Sobolev norms of the solutions.
This is a consequence of the complete integrability.

e \What happens in higher dimensions, i.e. for the equation
O+ Au = |ul?u,

where A is the Laplace operator 7

e Remark. In higher dimensions, the global well-posedness is already
a quite nontrivial problem.



The 3d NLS

e Let (M,g) be a smooth 3d riemannian manifold with a Laplace-
Beltrami operator A . Consider the Cauchy problem

i0U + AU = |UIPU, Uly—g=Uy, U:Rx M —C. (5)
e As in 1d, in the context of (5), we again have the conserved quan-
tities
1
2 4
||U||L2(M), HUHHl(M) T §||U||L4(M) -
Theorem 1 (Burq-Gérard-Tz. 2001)

Suppose that M is compact without boundary. For s > 1 and

Up € H5(M) there is a unique global solution of (5) in C(R; H5(M)).
T he dependence with respect to the initial data is continuous. The
L2 and the H! norms of the solutions are uniformly bounded in time.

e [ he result remains true for non compact manifolds with a controlled
behaviour at infinity such as R3, Rx T2, R2x T, R x S2 or a long range
perturbation of R3 outside a compact set.

Question : Do the H® norms, s # 0,1 remain bounded 7
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The 3d NLS on R3

Consider the Cauchy problem

iU + AU = |U|°U, Ul=o=Uy, U:RxR3—C. (6)
Theorem 2 (Ginibre-Velo, Bourgain, Dodson)
For s > 5/7 the problem (6) is globally well-posed in H5(R3). More-

over, for every Ug € H® there is C' > 0 such that for every t € R the
solution of (6) satisfies

1Ut )l g3y < C- (7)

For s > 1, one may proceed in two steps :

1) Using Morawetz identities (a way of exploiting the good sign of the
nonlinearity in a dispersive estimate) one first shows that the LP(R3),
p € (2,6) norms of the solution go to zero as t tends to infinity.

2) Then by a perturbative analysis one reinforces this information to
a control on space-time norms like L19(R x R3) of the solutions which
in turn implies (7).
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The 3d NLS on R x T2

e Consider the Cauchy problem

iU + AU = |UIPU, Ulj—g=Uy, U:Rx(RxT?)—C. (8)
1) The problem (8) is locally well-posed in H5(R x T?), s > 1/2 (ideas
by Bourgain)
2) It is ill-posed for s € (0,1/2) (ideas by Lebeau).
3) It is globally-well-posed for s > 5/6 (ideas by Tao et al.).
Theorem 3 (Pausader-Tz. 2017)
For every s € (1/2,00), s # 1 there exists Uy € H5(R x T?) such that

the corresponding solution of (8) is globally defined and

t—00

e Recall that for s > 1, the conservation laws provide an a priori bound
on the H1(RxT?) norm. We also always have an a priori bound on the
L2(R x T2) norm. A nonlinear interpolation is therefore impossible.

e Previous work by Hani-Pausader-Tz.-Visciglia 2013, obtained this
result for s > 30.
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Comments

e [ he above result is the first rigorous result of weak wave turbulence
for the Nonlinear Schrodinger equation. For s > 1 it represents a
transfer from low to high Fourier modes. For s € (1/2,1) it represents
a transfer from high to low Fourier modes.

e [ his result gives a partial answer to a question posed by Bourgain
in @ 2000 special issue of GAFA.

e [ he above results may be informally formulated as :

The Nonlinear Schrodinger equation on R x T? is not integrable
while it is on R, T or R3.
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Reduction of the problem

e Let U(%) be a solution of the cubic defocusing NLS, posed on R x TZ.
Then F(t) = e *AU(t) solves

iOLF (t) = NY[F(t), F(t), F(t)],
where the trilinear form N is defined by
NYF G, H] .= e A (eitAF LeTIAG. eitAH).

e Denote by Fp(f) or F(F)(&,p) the Fourier transform on R x T2 of
F'. Then the Fourier transform of the nonlinearity can be written as :

FNUF,GHI(Ep) = Y tlPEim el
p—p1+p2—p3=0

[, €12 By (6~ m)Gipa (6 — 1 — ) g (€ — ).
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Reduction of the problem (sequel)

e Ignoring the time oscillations (normal form reduction) and a sta-
tionary phase argument (¢ > 1) suggests to define R as

FRIF, G, H|(&,p) = D Fpy (€) Gy (€) Hps (€)
p+po=p1+p3
p|2+|p2|?=|p1]%+|p3|?

and one expects that the nonlinearity can be decomposed as follows
NF, G, H] = %R[F, G, H] + better terms
e \We therefore define the resonant system as
10:G(t) = R[G(t),G(t), G(t)] .

e [ he dependence on £ is merely parametric.

e We prove that given a solution G of the resonant system, bounded
in "some norm”, there is a solution of the true problem " close” to
G(miIn(t)) for ¢t > 1.
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Reduction of the problem (sequel)

e [ he justification of the normal form reduction and the stationary
phase is a part of the analysis typical for the long range scattering
for nonlinear PDE.

e It is a long and involved argument, using a number of tools developed
in the theory of nonlinear dispersive PDE in the last 30 years such as
Bourgain/Tataru spaces and almost orthogonality arguments.

e Once this analysis is done, we are reduced to the study of the (much
simpler but having a deep structure) resonant system

i0,G(t) = R[G(t), G(1), G(1)].
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Reduction to the resonant equation on T2

e \We take initial data of the resonance system of the form

Go(z,y) = Fr () (@)g(y), =€R,yeT?

with ¢ real valued. The solution G(t) to the resonance system with
initial data Gg(z,y) as above is given in Fourier space by

Gp(t, &) = @(&)ap(p(€)?t),  ap(0) = Fra(g)(p),
where the vector (ap)pezg solves the resonant equation
i0pap(t) = Z apy (t)ap,(t)aps(1) .

, p-l-p%:prl-zp:s X
p|“+|p2|“=|p1]|“+|p3|

e In particular, if ¢ = 1 on an open interval I, then @p(t,g) = ap(t)
for all t e R and £ € I. We can therefore apply the following result.
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Theorem 4 (growth for the resonant equation)
Lets> 0, s# 1. There exist global solutions to the resonant equation
in C(R; h®) such that

Sup [lap(t)|ps = oo
t>0
but for every € > 0

Sup |jlap(t e < 0.
sup [lap (1)

e Notation :

2 . 2 2
lapll7s = Z (1 + |p|*)%|ap|*.

pEZ?2
e Remark. Unfortunately, we have that, a,(t) ¢ h? for o > s.
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On the analysis of the resonant equation

e [ he analysis of the resonant equation is inspired by a work of
Colliander-Keel-Staffilani- Takaoka-Tao.

e It reminds the Arnold diffusion instability phenomena in Hamil-
tonian systems.

e WO important aspects of the analysis are:

1) There are many invariant subspaces for the resonant equation.

2) There is a superposition principle : for some initial data it " behaves
as a linear equation’.
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On the analysis of the resonant equation (sequel)

e It turns out that for every N > 1 there is Sy C Z2 written as a
disjoint union
Sy =N1UN>U---UAy,

with |A;| = 2N=1 such that Sy is invariant under the resonant equa-
tion. When j increases, the sets A; have points (but not all) at larger
and larger frequencies of Z2.

e Moreover, if we look for a solution which is constant on each /\j,
we are reduced to study the ODE on C&N which writes

—ib;(t) = —|bj(1)[?b;(t) 4 2b;_1(£)?b;(t) 4 2b;4-1(t)?b; (1),
j=1,2,...,N, with the convention bg(t) = by41(t) = 0.
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On the analysis of the resonant equation (sequel)

e It turns out that for every N > 1 and every € < 1072 there is a
solution such that

b3(0)| >1—¢, [b;(0)]<e, j#3
and
by—2(T)|>1—¢, [b;(T)|<e, j#N-2,
for some time T'=T(N,¢).

e The last result implies (only) a finite time amplification of the so-
lutions of the NLS.

e In order to get an infinite time result one performs a suitable su-
perposition of the above construction.
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