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The linear periodic Shrödinger equation

• In dimension 1, the linear periodic Schrödinger equation reads

∂tu = i ∂2
xu, u(0, x) = u0(x), (1)

where i =
√
−1, t ∈ R, x ∈ T = R|(2πZ) and u : R× T→ C.

• For u0 ∈ C∞(T) the solution of (1) is given by the exponential sum

u(t, x) =
∑
n∈Z

e−itn
2
einx û0(n),

where û0(n) is the n’th Fourier coefficient of u0(x), i.e.

û0(n) =
1

2π

∫ 2π

0
e−inxu0(x) dx.

• Observe that u(t, x) is 2π-periodic in time : u(t+ 2π, x) = u(t, x).

1



Conservation of the Sobolev norms

• If a function u : T→ C has a Fourier expansion

u(x) =
∑
n∈Z

einx û(n)

then for s ∈ R, the Sobolev norm Hs of u is defined by

‖u‖2Hs =
∑
n∈Z

(1 + n2)s|û(n)|2 .

For s = 0, we recover an equivalent to the L2 norm. We also have

‖u‖H1 ≈ ‖u‖L2 + ‖u′‖L2, ‖u‖H2 ≈ ‖u‖L2 + ‖u′‖L2 + ‖u′′‖L2, etc.

• It is now clear that the above solution of the linear periodic Schrödinger

equation satisfies

‖u(t, ·)‖Hs = ‖u0‖Hs, ∀ t ∈ R. (2)

• We can therefore uniquely extend the solution map u0(x) 7→ u(t, x)

to a continuous map from Hs(T) to C(R;Hs(T)), s ∈ R. Moreover

the Hs(T) norm is preserved, i.e. we have (2).
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The linear Shrödinger equation on the line

• Consider now the 1d linear Schrödinger equation on the real line

∂tu = i ∂2
xu, u(0, x) = u0(x) t ∈ R, x ∈ R. (3)

If u0 is in the Schwartz class then the solution is given by

u(t, x) =
1

2π

∫
R
e−itξ

2
eixξ û0(ξ)dξ,

where û0(ξ), ξ ∈ R is the Fourier transform of u0, defined by

û0(ξ) =
∫
R
e−ixξu0(x)dx .

• The Sobolev norm Hs of functions on R is now defined by

‖f‖2Hs =
∫
R

(1 + ξ2)s|f̂(ξ)|2dξ .

Since

û(t, ·)(ξ) = e−itξ
2
û0(ξ) =⇒ |û(t, ·)(ξ)| = |û0(ξ)|

the solution of (3) satisfies

‖u(t, ·)‖Hs = ‖u0‖Hs .
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The dispersion

• By applying a stationary phase estimate to

u(t, x) =
1

2π

∫
R
e−itξ

2
eixξ û0(ξ)dξ,

we obtain that there is c ∈ C and C > 0 such that for every t ≥ 1,

every x ∈ R,

∣∣∣∣u(t, x)− c
ei
x2
4t
√
t
û0(x/2t)

∣∣∣∣ ≤ Ct−3
4‖xu0‖L2 .

In particular, for t ≥ 1,

|u(t, x)| ≤ C(u0) t−
1
2 , ∀x ∈ R.

• Therefore the solution disperses keeping the Hs norms conserved.

• Another manifestation of the dispersion is the Strichartz estimate

‖u(t, x)‖L6(R×R) ≤ C‖u0(x)‖L2(R) .
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A fully non linear model

•Consider the equation

∂tu = −i|u|2u, u(0, x) = u0(x).

• For u0 ∈ L2, the solution is given by :

u(t, x) = e−it|u0(x)|2 u0(x) .

• Then

∂xu(t, x) = e−it|u0(x)|2
(
∂xu0(x)− itu0(x) ∂x(|u0(x)|2)

)
.

• Therefore for u0(x) such that |u0(x)| is not a constant, there exists

C > 0 and A ≥ 1 such that for t ≥ A,

‖u(t, ·)‖H1 ≥ Ct,

i.e. the H1 norm grows in time ! Similarly for Hs, s ≥ 0 initial data

‖u(t, ·)‖Hs ≥ Cts.
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The 1d Nonlinear Schrödinger equation (NLS)

• We considered so far the linear model

∂tu = i ∂2
xu

and the fully nonlinear model

∂tu = −i|u|2u

• The 1d NLS is obtained when one takes into account both effects :

∂tu = i ∂2
xu− i|u|2u

or equvalently

i∂tu+ ∂2
xu = |u|2u .

• For the linear model the Sobolev noms Hs of the solutions remain

bounded while for the fully nonlinear model they grow as far as s > 0.

• The question we discuss today is which effect dominates in

the context of NLS.
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Global well-posedness and basic conservation laws for NLS

• Thanks to the 1d Sobolev emebedding H1 ⊂ L∞ which makes that
in 1d the Sobolev space H1 is an algebra, we can easily solve locally
in H1 the initial value problem for

i∂tu+ ∂2
xu = |u|2u . (4)

• Multiply (4) with ū, i∂tū, integrate over x and take the imaginary
part. It comes :

d

dt
‖u(t, ·)‖2

L2 = 0,
d

dt

(
‖∂xu(t, ·)‖2

L2 +
1

2
‖u(t, ·)‖4

L4

)
= 0 .

• One can deduce the second conservation law as the Hamiltonian
conservation resulting from the Hamiltonian formulation of NLS.
• Therefore, for s ≥ 1 we can extend globally in time the local solu-
tions. Moreover, the L2 and the H1 norms of the solutions remain
bounded in time. Therefore, concerning the H1 norm, the linear ef-
fect dominates.
Question : What about the Hs, s > 1 norms ?
Remark : The question of the growth of the Sobolev norms may be
seen as a competition between the kinetic and the potential energies.
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Higher order conservation laws for 1d NLS

• Using the Lax representation of the 1d NLS, Zakharov-Shabat

(1972) obtained that if u is an Hs, s ≥ 2 solution of

i∂tu+ ∂2
xu = |u|2u

then

d

dt

(
‖∂2
xu‖2L2 + 2‖Re(∂xu ū)‖2

L2 + 3‖u∂xu‖2L2 +
1

2
‖u‖6

L6

)
= 0 .

Here x can be both in T or R.

• Therefore the H2 norms of the solutions remain bounded in time.

• Similarly one gets uniform in time bounds for the Hs norms,

s = 3,4,5, . . . .

• Recent work (2016) by Koch-Tataru extends these bounds for all

s ≥ 0 in the case x ∈ R (for x ∈ T, there is an earlier work by Grebert-

Kappeler).
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Conclusion of the 1d analysis

• In summary, for the 1d NLS both on R and T, the linear effect dom-

inates concerning the bounds on the Sobolev norms of the solutions.

This is a consequence of the complete integrability.

• What happens in higher dimensions, i.e. for the equation

i∂tu+ ∆u = |u|2u,

where ∆ is the Laplace operator ?

• Remark. In higher dimensions, the global well-posedness is already

a quite nontrivial problem.
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The 3d NLS

• Let (M, g) be a smooth 3d riemannian manifold with a Laplace-
Beltrami operator ∆ . Consider the Cauchy problem

i∂tU + ∆U = |U |2U, U |t=0 = U0, U : R×M → C. (5)

• As in 1d, in the context of (5), we again have the conserved quan-
tities

‖U‖L2(M), ‖U‖2
H1(M) +

1

2
‖U‖4

L4(M) .

Theorem 1 (Burq-Gérard-Tz. 2001)

Suppose that M is compact without boundary. For s ≥ 1 and
U0 ∈ Hs(M) there is a unique global solution of (5) in C(R;Hs(M)).
The dependence with respect to the initial data is continuous. The
L2 and the H1 norms of the solutions are uniformly bounded in time.

• The result remains true for non compact manifolds with a controlled
behaviour at infinity such as R3, R×T2, R2×T, R×S2 or a long range
perturbation of R3 outside a compact set.

Question : Do the Hs norms, s 6= 0,1 remain bounded ?
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The 3d NLS on R3

Consider the Cauchy problem

i∂tU + ∆U = |U |2U, U |t=0 = U0, U : R× R3 → C. (6)

Theorem 2 (Ginibre-Velo, Bourgain, Dodson)

For s > 5/7 the problem (6) is globally well-posed in Hs(R3). More-

over, for every U0 ∈ Hs there is C > 0 such that for every t ∈ R the

solution of (6) satisfies

‖U(t, ·)‖Hs(R3) ≤ C. (7)

For s ≥ 1, one may proceed in two steps :

1) Using Morawetz identities (a way of exploiting the good sign of the

nonlinearity in a dispersive estimate) one first shows that the Lp(R3),

p ∈ (2,6) norms of the solution go to zero as t tends to infinity.

2) Then by a perturbative analysis one reinforces this information to

a control on space-time norms like L10(R×R3) of the solutions which

in turn implies (7).
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The 3d NLS on R× T2

• Consider the Cauchy problem

i∂tU + ∆U = |U |2U, U |t=0 = U0, U : R× (R× T2)→ C. (8)

1) The problem (8) is locally well-posed in Hs(R×T2), s > 1/2 (ideas
by Bourgain)
2) It is ill-posed for s ∈ (0,1/2) (ideas by Lebeau).
3) It is globally-well-posed for s > 5/6 (ideas by Tao et al.).

Theorem 3 (Pausader-Tz. 2017)

For every s ∈ (1/2,∞), s 6= 1 there exists U0 ∈ Hs(R × T2) such that
the corresponding solution of (8) is globally defined and

lim sup
t→∞

‖U(t)‖Hs(R×T2) = +∞ .

• Recall that for s ≥ 1, the conservation laws provide an a priori bound
on the H1(R×T2) norm. We also always have an a priori bound on the
L2(R× T2) norm. A nonlinear interpolation is therefore impossible.
• Previous work by Hani-Pausader-Tz.-Visciglia 2013, obtained this
result for s ≥ 30.
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Comments

• The above result is the first rigorous result of weak wave turbulence

for the Nonlinear Schrödinger equation. For s > 1 it represents a

transfer from low to high Fourier modes. For s ∈ (1/2,1) it represents

a transfer from high to low Fourier modes.

• This result gives a partial answer to a question posed by Bourgain

in a 2000 special issue of GAFA.

• The above results may be informally formulated as :

The Nonlinear Schrödinger equation on R× T2 is not integrable

while it is on R, T or R3.

13



Reduction of the problem

• Let U(t) be a solution of the cubic defocusing NLS, posed on R×T2.

Then F (t) = e−it∆U(t) solves

i∂tF (t) = N t[F (t), F (t), F (t)],

where the trilinear form N t is defined by

N t[F,G,H] := e−it∆
(
eit∆F · e−it∆G · eit∆H

)
.

• Denote by F̂p(ξ) or F(F )(ξ, p) the Fourier transform on R × T2 of

F . Then the Fourier transform of the nonlinearity can be written as :

FN t[F,G,H](ξ, p) =
∑

p−p1+p2−p3=0

eit
[
|p|2−|p1|2+|p2|2−|p3|2

]
∫
R2
eit2ηκF̂p1(ξ − η)Ĝp2(ξ − η − κ)Ĥp3(ξ − κ)dκdη .

14



Reduction of the problem (sequel)

• Ignoring the time oscillations (normal form reduction) and a sta-

tionary phase argument (t� 1) suggests to define R as

FR[F,G,H](ξ, p) :=
∑

p+p2=p1+p3
|p|2+|p2|2=|p1|2+|p3|2

F̂p1(ξ)Ĝp2(ξ)Ĥp3(ξ)

and one expects that the nonlinearity can be decomposed as follows

N t[F,G,H] =
π

t
R[F,G,H] + better terms

• We therefore define the resonant system as

i∂tG(t) = R[G(t), G(t), G(t)] .

• The dependence on ξ is merely parametric.

• We prove that given a solution G of the resonant system, bounded

in ”some norm”, there is a solution of the true problem ”close” to

G(π ln(t)) for t� 1.
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Reduction of the problem (sequel)

• The justification of the normal form reduction and the stationary

phase is a part of the analysis typical for the long range scattering

for nonlinear PDE.

• It is a long and involved argument, using a number of tools developed

in the theory of nonlinear dispersive PDE in the last 30 years such as

Bourgain/Tataru spaces and almost orthogonality arguments.

• Once this analysis is done, we are reduced to the study of the (much

simpler but having a deep structure) resonant system

i∂tG(t) = R[G(t), G(t), G(t)] .
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Reduction to the resonant equation on T2

• We take initial data of the resonance system of the form

G0(x, y) = F−1
R (ϕ)(x)g(y), x ∈ R, y ∈ T2,

with ϕ real valued. The solution G(t) to the resonance system with

initial data G0(x, y) as above is given in Fourier space by

Ĝp(t, ξ) = ϕ(ξ)ap(ϕ(ξ)2t), ap(0) = FT2(g)(p),

where the vector (ap)p∈Z2 solves the resonant equation

i∂tap(t) =
∑

p+p2=p1+p3
|p|2+|p2|2=|p1|2+|p3|2

ap1(t)ap2(t)ap3(t) .

• In particular, if ϕ = 1 on an open interval I, then Ĝp(t, ξ) = ap(t)

for all t ∈ R and ξ ∈ I. We can therefore apply the following result.
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Theorem 4 (growth for the resonant equation)

Let s > 0, s 6= 1. There exist global solutions to the resonant equation

in C(R;hs) such that

sup
t≥0
‖ap(t)‖hs =∞

but for every ε > 0

sup
t≥0
‖ap(t)‖hs−ε <∞.

• Notation :

‖ap‖2hs :=
∑
p∈Z2

(1 + |p|2)s|ap|2.

• Remark. Unfortunately, we have that, ap(t) /∈ hσ for σ > s.
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On the analysis of the resonant equation

• The analysis of the resonant equation is inspired by a work of

Colliander-Keel-Staffilani-Takaoka-Tao.

• It reminds the Arnold diffusion instability phenomena in Hamil-

tonian systems.

• Two important aspects of the analysis are:

1) There are many invariant subspaces for the resonant equation.

2) There is a superposition principle : for some initial data it ”behaves

as a linear equation”.
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On the analysis of the resonant equation (sequel)

• It turns out that for every N ≥ 1 there is SN ⊂ Z2 written as a

disjoint union

SN = Λ1 ∪ Λ2 ∪ · · · ∪ ΛN ,

with |Λj| = 2N−1 such that SN is invariant under the resonant equa-

tion. When j increases, the sets Λj have points (but not all) at larger

and larger frequencies of Z2.

• Moreover, if we look for a solution which is constant on each Λj,

we are reduced to study the ODE on CN which writes

−iḃj(t) = −|bj(t)|2bj(t) + 2bj−1(t)2bj(t) + 2bj+1(t)2bj(t),

j = 1,2, ..., N , with the convention b0(t) = bN+1(t) = 0.
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On the analysis of the resonant equation (sequel)

• It turns out that for every N ≥ 1 and every ε < 10−2 there is a

solution such that

|b3(0)| > 1− ε, |bj(0)| < ε, j 6= 3

and

|bN−2(T )| > 1− ε, |bj(T )| < ε, j 6= N − 2,

for some time T = T (N, ε).

• The last result implies (only) a finite time amplification of the so-

lutions of the NLS.

• In order to get an infinite time result one performs a suitable su-

perposition of the above construction.
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