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RATIONALITY

e /2 - Pythagoras (500BC?), by contradiction

e V3,...,v/17 — Theodorus of Cyrene (400 BC?, teacher of
Plato): stopped at 17, because his algebra was weak
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RATIONALITY: NUMBER THEORY

Classical problems:
e Doubling the cube, i.e., constructing v/2

o Trisecting the angle

o Constructing regular polygons
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CONSTRUCTION OF REGULAR POLYGONS

Gauss (1796): A regular p-gon is constructible with compass and
straightedge if p is a Fermat prime, i.e., p = 22" + 1; first such
primes are 3,5,17,257,65537, ...
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CONSTRUCTION OF REGULAR POLYGONS

Gauss (1796): A regular p-gon is constructible with compass and
straightedge if p is a Fermat prime, i.e., p = 22" + 1; first such
primes are 3,5,17,257,65537, ...

F. Richelot (1832): Explicit construction of the 257-gon

J. Hermes (1894): Explicit construction of the 65537-gon, 10
years of work...

INTRODUCTION
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HIDDEN SYMMETRIES

Solutions of many classical problems, and properties of numbers,
are governed by Galois groups, symmetry groups of fields.

This idea had an enormous impact on mathematics and theoretical
physics.

INTRODUCTION



GALOIS GROUPS

Let K be a field, e.g., K = Q, and
f@)=a2" 4 ap12" '+ ..+ arx +ag € K[z]

a polynomial with coefficients in K. Let L C K be the smallest
subfield of an algebraic closure of K containing all roots of f. The
Galois group

Gal(f) = Gal(L/K) C &,
is the group of automorphisms of L fixing K. It is a subgroup of
the symmetric group exchanging the roots of f.
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GALOIS GROUPS

Let K be a field, e.g., K = Q, and
f@)=a2" 4 ap12" '+ ..+ arx +ag € K[z]

a polynomial with coefficients in K. Let L C K be the smallest
subfield of an algebraic closure of K containing all roots of f. The
Galois group

Gal(f) = Gal(L/K) C &,

is the group of automorphisms of L fixing K. It is a subgroup of
the symmetric group exchanging the roots of f. It can be
effectively computed, e.g.,
o Gal(z' + 2% +... + 2+ 1) = (Z/1TZ)* ~ Z/16Z, this is why
the 17-gon is constructible with compass and straightedge

INTRODUCTION



HILBERT’S IRREDUCIBILITY
INVERSE GALOIS PROBLEM

Can every finite group G be realized as the Galois group of some
extension of Q7
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Let G be a finite group. Assume that G can be realized as a Galois
group of
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HILBERT’S IRREDUCIBILITY

INVERSE GALOIS PROBLEM

Can every finite group G be realized as the Galois group of some
extension of Q7

HILBERT

Let G be a finite group. Assume that G can be realized as a Galois
group of
K =Q(x1,...,2).

Then it can be realized as the Galois group of an extension over Q.

NOETHER (1916)

Let G be a finite group, V' a representation of G over a field k.
Assume that Q(V)¢ is rational. Then G can be realized as the
Galois group of some extension over Q.

INTRODUCTION



NOETHER’S PROBLEM

INTRODUCTION

Gleich

E. Norrses. gen mit vorgeschrieb Gruppe. 221

Gleichungen mit vorgeschriebener Gruppe.
Von

Exuxy Nokrser in Gottingen.

Das Problem der Konstruktion von Gleichungen mit vorgeschriebener
Gruppe 1aBt sich in zwei Richtungen angreifen, die man kurz als die
pirrationale” oder die Wurzeln charakterisierende, und die ,rationale“ oder
die Koeffizienten charakterisierende, bezeichnen kann.

In der ,irrationalen® Richtung, die funktionentheoretisch-arithmetisch
arbeitet, liegt der Kroneckersche Satz, daB alle Abelschen Kérper im Ge-

hiat dor vationalon Zahlen Kraeiskirner sind_ _nnd die entsorechenden Sitze



NOETHER’S PROBLEM

Let G be a finite group and V' a representation of G over a field k.
Is V/G rational?
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NOETHER’S PROBLEM

Let G be a finite group and V a representation of G over a field k.
Is V/G rational? E.g., when k is algebraically closed?

Yes for:
e G,
@ abelian groups
e dim(V) <3
Unknown for:

@ projective representations of &5, Sg, g, A7 — PGL4(C)
) SLQ(F7) C SL4((C)
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NOETHER’S PROBLEM

SALTMAN (1984)

There exist groups G of order /2 and representations V' such that
V/G is not rational.
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SALTMAN (1984)

There exist groups G of order /2 and representations V' such that
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BocomoLov (1988)
There exist groups G of order ¢¢ with V/G not rational.

e Obstruction lies in Galois cohomology H2,(k(V/Q),Z/¢),
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NOETHER’S PROBLEM

SALTMAN (1984)

There exist groups G of order /2 and representations V' such that
V/G is not rational.

BocomoLov (1988)
There exist groups G of order ¢¢ with V/G not rational.

e Obstruction lies in Galois cohomology H2,(k(V/Q),Z/¢),

e Starting point of birational Almost abelian anabelian geometry
program of Bogomolov

INTRODUCTION



RATIONALITY: ALGEBRA

A field K/k is
(R) rational: if K ~ k(xq,...,zy) for some n, i.e., if K is a
purely-transcendental extension of k
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RATIONALITY: ALGEBRA

A field K/k is

(R) rational: if K ~ k(xq,...,zy) for some n, i.e., if K is a
purely-transcendental extension of k

(S) stably rational: if K (xo,...,xy)/k is rational, for some n

(U) unirational: if K C k(xo,...,zy), for some n

INTRODUCTION



RATIONALITY: GEOMETRY

A projective algebraic variety X/k “is” the set of solutions of a

system of homogeneous polynomial equations with coefficients in k,
e.g.,

2t =22 t(@® 497+ 22) = ayz, ..

The standard example is projective space P", when there are no
equations.
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RATIONALITY: GEOMETRY

A projective algebraic variety X/k “is” the set of solutions of a

system of homogeneous polynomial equations with coefficients in k,
e.g.,

2t =22 t(@® 497+ 22) = ayz, ..

The standard example is projective space P", when there are no
equations.

A fundamental problem is to determine how close an algebraic
variety X is to P".

INTRODUCTION
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(R) rational: if X ~ P™ for some n
(S) stably rational: if X x P™ is rational, for some n

(U) unirational: if P™ --» X, for some n

Le., the function field k(X) is rational, stably rational, or
unirational. This notion depends on k.
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RATIONALITY: GEOMETRY

(R) rational: if X ~ P™ for some n
(S) stably rational: if X x P™ is rational, for some n

(U) unirational: if P™ --» X, for some n

Le., the function field k(X) is rational, stably rational, or
unirational. This notion depends on k.

(R) = (5) = (U)

INTRODUCTION



CONICS

All rational solutions (rational points) of

222 =1
are given by
1 2
TTire VT ire

Rational curve: parametrized by rational functions in one variable

CLASSICAL RESULTS






CurvEs: LUROTH 1876

Beweis eines Satzes tiber rationale Curven.

Von J. Lirors in Karlsruhe.

Wenn die Coordinaten eines Punktes einer Curve sich darstellen
lassen als rationale Functionen eines Parameters 4, so entspricht stets
jedem Werth von 4 nur ein Punkt der Curve, dagegen braucht nicht
immer jedem Punkt der Curve nur ein Werth von 4 zu entspréchen,

wie das Beispiel der Gleichungen z = 1%, y = -;, zeigt,

THEOREM
In dimension 1, rationality = stable rationality=unirationality.

CLASSICAL RESULTS



In dimension 2, over C,

rationality = stable rationality = unirationality



SURFACES: CASTELNUOVO, ENRIQUES

THEOREM
In dimension 2, over C,

rationality = stable rationality = unirationality

This can fail over nonclosed ground-fields k.

Approach: via classification.

CLASSICAL RESULTS



e via dimension,



CLASSIFICATION SCHEMES

@ via dimension,

e via degree (in some embedding into projective space); e.g.,
Fano, general type, intermediate type,

depending on ampleness of the (anti)canonical class Kx,
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CLASSIFICATION SCHEMES

@ via dimension,

e via degree (in some embedding into projective space); e.g.,
Fano, general type, intermediate type,

depending on ampleness of the (anti)canonical class Kx,

o Geometric invariants: rational connectedness, i.e., every pair of
points can be connected by a rational curve, or other
properties of spaces of rational curves on X.

CLASSICAL RESULTS



CLASSIFICATION IN LOW DIMENSIONS

dim | Fano Intermediate type General type
1 P! elliptic curves C, g(C)>2
2 P2, P! x P!, K3 surfaces : X, C P?

Xoo C P4, X3 c P? | abelian surfaces, ...

3 ~ 120 families Calabi — Yau varieties

CLASSICAL RESULTS



(QUADRIC SURFACES

CLASSICAL RESULTS



CUBIC SURFACES




How to parametrize 2% + 3% + 23 + w3 = 07



CUBIC SURFACES

How to parametrize x2 + 3 + 23 4+ w3 = 07 Elkies:

= —(s+r)t2+(s2+2r%)t — 53 +rs? —2r2s — 13

— (s +7)t2 + (% + 27‘2)t +7s? — 2r2s + 13
—t3+ (s +7)t2 — (s + 202 )t—|—27"s —ris+ 23
= (s=2r)t2 4 (r2 — %)t + 3 — rs? + 2r2s — 213

g v 8
Il
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CUBIC SURFACES

How to parametrize x2 + 3 + 23 4+ w3 = 07 Elkies:

= —(s+n)t2+ (2 +2r?)t — 83 +rs? —2r2s — 13
— (s + )2+ (s> + 27‘2)t +rs? —2r2s 4+ 13
—t3+ (s +7)t2 — (s + 202 )t—|—27"s —ris+ 23
= (s=2r)t2 4 (r2 — %)t + 3 — rs? + 2r2s — 213

g v 8
Il

What about 23 + y3 4+ 23 + 2w? = 0?
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CUBIC SURFACES

How to parametrize x2 + 3 + 23 4+ w3 = 07 Elkies:

= —(s+r)t2+(s2+2r%)t — 53 +rs? —2r2s — 13

— (s +7)t2 + (% + 27‘2)t +7s? — 2r2s + 13
—t3+ (s +7)t2 — (s + 202 )t—|—27"s —ris+ 23
= (s=2r)t2 4 (r2 — %)t + 3 — rs? + 2r2s — 213

g v 8
Il

What about 23 + y3 4+ 23 + 2w? = 0?

Obstruction to rationality is nontriviality of Galois cohomology:

HY(Q, Pic(X)).

CLASSICAL RESULTS



DEL PEZZO SURFACES OVER NONCLOSED FIELDS

Del Pezzo surfaces = 2-dimensional Fano varieties

THEOREM
Let X be a smooth del Pezzo surface.
o deg(X) >5: If X (k) # 0 then X is k-rational.
o deg(X) =4,3: If X(k) # 0 then X is k-unirational.

CLASSICAL RESULTS



DEL PEZZO SURFACES OVER NONCLOSED FIELDS

Del Pezzo surfaces = 2-dimensional Fano varieties

THEOREM
Let X be a smooth del Pezzo surface.
o deg(X) >5: If X (k) # 0 then X is k-rational.
o deg(X) =4,3: If X(k) # 0 then X is k-unirational.

If deg(X) =1 then X (k) # 0. It is unknown whether or not X is
unirational. We don’t know whether or not rational points are
Zariski dense.

CLASSICAL RESULTS



CONIC BUNDLES OVER NONCLOSED FIELDS

EXAMPLE

Let X be a conic bundle over P!, over a field &, given by
2 2 _ 2 _ : _
a® —ay” = f(s)z", deg(f) =3, disc(f)=a,

with f irreducible over k. Then X is nonrational but stably
rational.

CLASSICAL RESULTS



THREEFOLDS

The Minimal Model Program implies that rationally connected
3-folds are of three types:

@ Fano 3-folds
@ Del Pezzo fibrations over P!

@ Conic bundles over a rational surface.
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THREEFOLDS

The Minimal Model Program implies that rationally connected
3-folds are of three types:

@ Fano 3-folds
@ Del Pezzo fibrations over P!

@ Conic bundles over a rational surface.
Many (all??) of these are unirational.

LUROTH’S PROBLEM
Does unirationality imply rationality?

There were numerous unsuccessful attempts to find
counterexamples.

CLASSICAL RESULTS



FaANO 1915

Ossepvazioni sopra alcune varietd non razionali
aventi tutti i generi nulli.

di GINO FANO.

In un lavoro pubblicato alcuni anni or sono negli “ Atti , di
questa R. Accademia () ho dimostrato che la varieta del 4° ordine
dello spazio S, priva di punti doppi, e la varieta M3 di S; inter-
sezione generale di una quadrica e di una varieta cubica di que-
st'ultimo spazio, pur avendo tutti i generi nulli, non sono ra-
zionali. La dimostrazione era fondata sull’ impossibilita di
soddisfare in pari tempo a certe condizioni, tutte necessarie per
I'esistenza di sistemi omaloidici di superficie contenuti rispett.
in quelle due varieta.

CLASSICAL RESULTS



COUNTEREXAMPLES TO LUROTH’S PROBLEM

Major developments in 1971-72:

o Iskovskikh-Manin: quartic in P* via birational rigidity

THE 19708
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COUNTEREXAMPLES TO LUROTH’S PROBLEM

Major developments in 1971-72:

o Iskovskikh-Manin: quartic in P* via birational rigidity
o Clemens-Griffiths: cubic in P* via intermediate Jacobians

o Artin-Mumford: conic bundles via unramified cohomology

THE 19708



BIRATIONAL RIGIDITY

This approach stimulated major developments in algebraic
geometry.

THE 19708



BIRATIONAL RIGIDITY

This approach stimulated major developments in algebraic
geometry.

o Reid, Corti, Pukhlikov, Cheltsov
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BIRATIONAL RIGIDITY

This approach stimulated major developments in algebraic
geometry.

o Reid, Corti, Pukhlikov, Cheltsov

o A smooth hypersurface of degree n in P™ is birationally rigid
(de Fernex, 2013)

THE 19708



INTERMEDIATE JACOBIANS

THEOREM

If the intermediate Jacobian 1J(X) of a threefold X is not a product
of Jacobians of curves then X is nonrational.

THE 19708



INTERMEDIATE JACOBIANS

THEOREM

If the intermediate Jacobian 1J(X) of a threefold X is not a product
of Jacobians of curves then X is nonrational.

Implementation:

e Cubic threefolds (Clemens—Griffiths)
e Intersection of 3 quadrics and conic bundles (Beauville)

o Del Pezzo surface fibrations over P! (Alexeev, Vassil Kanev)

THE 19708



INTERMEDIATE JACOBIANS

THEOREM

If the intermediate Jacobian 1J(X) of a threefold X is not a product
of Jacobians of curves then X is nonrational.

Implementation:

e Cubic threefolds (Clemens—Griffiths)
e Intersection of 3 quadrics and conic bundles (Beauville)

o Del Pezzo surface fibrations over P! (Alexeev, Vassil Kanev)

Limitation: Does not detect failure of stable rationality

THE 19708



SPECIALIZATION METHOD

Idea (Clemens 1974): Let
b:X B

be a family of Fano threefolds, with smooth generic fiber. Assume
that there exists a point b € B such that the fiber

X =¢7'(b)

satisfies the following conditions:
(S) Singularities: X has at most rational double points

(O) Obstruction: the intermediate Jacobian 1J (Xp) (of the
resolution of singularities X)) is not a product of Jacobians of
curves.

Then a general fiber A&} is not rational.

THE 19708



SPECIALIZATION METHOD

Idea (Clemens 1974): Let
b:X B

be a family of Fano threefolds, with smooth generic fiber. Assume
that there exists a point b € B such that the fiber

X =¢7'(b)

satisfies the following conditions:
(S) Singularities: X has at most rational double points

(O) Obstruction: the intermediate Jacobian 1J (Xp) (of the
resolution of singularities X)) is not a product of Jacobians of
curves.

Then a general fiber A&} is not rational.

Implementation (Beauville 1977): nonrationality of certain

Fano varieties
THE 1970s



BRAUER GROUP

THEOREM (ARTIN-MUMFORD)

Let X — S be a conic bundle over a smooth projective rational
surface with discriminant a smooth curve

and with g(Dj;) > 1 for all j. Then

Hy.(k(X),Z/2) = (Z/2)" .

THE 19708



BRAUER GROUP

THEOREM (ARTIN-MUMFORD)

Let X — S be a conic bundle over a smooth projective rational
surface with discriminant a smooth curve

and with g(Dj;) > 1 for all j. Then
Hy, (k(X),Z/2) = (Z/2) .

Implementation: A special conic bundle over P?.

THE 19708



CYCLE-THEORETIC TOOLS: CHj

CHg(X}) is the abelian group generated by zero-dimensional
subvarieties © € X (e.g., points x € X (k)), modulo k-rational
equivalence.

Assuming X (k) # 0, there is a surjective homomorphism
deg : CHo(X%) — Z.

For which X is this an isomorphism?

EXAMPLE

o X a unirational or rationally-connected variety over k = C.

NEW DEVELOPMENTS



A projective X/k is universally CHy-trivial if for all k'/k

CHy(Xp) = 7



CHy-TRIVIALITY

A projective X/k is universally CHy-trivial if for all &’/k

CHo(Xy) = Z

For example, smooth k-rational varieties are universally
CHy-trivial.
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CHy-TRIVIALITY

A projective X/k is universally CHy-trivial if for all &'/k

CHo(Xy) = Z

For example, smooth k-rational varieties are universally
CHp-trivial. Unirational or rationally-connected varieties are not
necessarily universally CHg-trivial.
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CHy-TRIVIALITY

A projective X /k is universally CHo-trivial if for all &' /k
CHo(Xp) — Z

For example, smooth k-rational varieties are universally

CHp-trivial. Unirational or rationally-connected varieties are not

necessarily universally CHg-trivial. Varieties with nontrivial
unramified cohomology groups are not universally CHg-trivial.

NEW DEVELOPMENTS



SPECIALIZATION METHOD
VoIsIN 2014, COLLIOT-THELENE-PIRUTKA 2015

Let
¢: X — B

be a flat projective morphism of complex varieties with smooth
generic fiber. Assume that there exists a point b € B such that the
fiber

X :=¢"'(b)
satisfies the following conditions:
(S) Singularities: X has mild singularities
(O) Obstruction: the group H2,(C(X),Z/2) is nontrivial.

Then a very general fiber of ¢ is not stably rational.

NEW DEVELOPMENTS



SPECIALIZATION METHOD: FIRST APPLICATIONS

Very general varieties below are not stably rational:
e Quartic double solids X — P3 with < 7 double points
(Voisin 2014)
e Quartic threefolds (Colliot-Thélene-Pirutka 2014)
e Sextic double solids X — P3 (Beauville 2014)
e Fano hypersurfaces of high degree (Totaro 2015)

@ Cyclic covers X — P of prime degree
(Colliot-Thélene—Pirutka 2015)

e Cyclic covers X — P" of arbitrary degree (Okada 2016)

NEW DEVELOPMENTS



CONIC BUNDLES OVER RATIONAL SURFACES

THEOREM (HASSETT-KRESCH-T. 2015)

A wvery general conic bundle X — S, over a rational surface S, with
discriminant of sufficiently high degree, e.g., X — P?, with
discriminant a curve of degree > 6, is not stably rational.

NEW DEVELOPMENTS



CONIC BUNDLES OVER RATIONAL SURFACES

THEOREM (HASSETT-KRESCH-T. 2015)

A wvery general conic bundle X — S, over a rational surface S, with
discriminant of sufficiently high degree, e.g., X — P?, with
discriminant a curve of degree > 6, is not stably rational.

THEOREM (KRESCH-T. 2017)

Stmilar result for 2-dimensional Brauer-Severi bundles over
rational surfaces.

NEW DEVELOPMENTS



DEL PEZZO FIBRATIONS

THEOREM (HASSETT-T. 2016)

A wvery general fibration 7 : X — P! in quartic del Pezzo surfaces
which is not rational and not birational to a cubic threefold is not
stably rational.

NEW DEVELOPMENTS



DEL PEZZO FIBRATIONS

THEOREM (HASSETT-T. 2016)

A wvery general fibration 7 : X — P! in quartic del Pezzo surfaces
which is not rational and not birational to a cubic threefold is not
stably rational.

THEOREM (KRYLOV-OKADA 2017)

A wvery general del Pezzo fibration m: X — P of degree 1, 2, or &
which is not rational and not birational to a cubic threefold is not
stably rational.

NEW DEVELOPMENTS



FANO THREEFOLDS

THEOREM (HASSETT-T. 2016)

A wvery general nonrational Fano threefold X over k = C which is
not birational to a cubic threefold is not stably rational.

NEW DEVELOPMENTS



FANO THREEFOLDS: IDEA AND IMPLEMENTATION

Find suitable degenerations with mild singularities and birational
to conic bundles.

Nonrational Fano threefolds with

Pic(V) = -KyZ and d=d(V)=-K:

d = 2 sextic double solid
d = 4 quartic

d = 6 intersection of a quadric and a cubic

d = 8 intersection of three quadrics

d = 10 section of Gr(2,5) by two linear forms and a quadric
d = 14 birational to a cubic threefold

e 6 6 o o

NEW DEVELOPMENTS



FANO THREEFOLDS: DEGENERATIONS

From general quartic del Pezzo X — P! to Fano threefolds V:
e d=2: h(X) = 22 = sextic double solid V' with 3244 nodes
e d=4: h(X) =20 = quartic threefold with 16 nodes
e d=6: h(X) =18 = quadric N cubic with 8 nodes
e d=8: h(X) =16 = intersection of three quadrics with 4 nodes
e d=10: h(X) = 14 = specialization of a V' with 2 nodes

NEW DEVELOPMENTS



FANO THREEFOLDS: DEGENERATIONS

From general quartic del Pezzo X — P! to Fano threefolds V:

e d=2: h(X) = 22 = sextic double solid V' with 3244 nodes

e d=4: h(X) =20 = quartic threefold with 16 nodes

e d=06: h(X

e d=8: h(X) =16 = intersection of three quadrics with 4 nodes
d =10: h(X) = 14 = specialization of a V' with 2 nodes

) = 18 = quadric N cubic with 8 nodes

The other families of Fano threefolds are conic bundles, but not
very general, as in the theorem above. Additional work is needed.

NEW DEVELOPMENTS



FANO THREEFOLDS AND DEL PEZZO FIBRATIONS

Consider the intersection of two (1, 2)-hypersurfaces in P! x P4
sP; +tQ1 = sPy +tQ2 = 0.
Let v1,...,v16 € P* denote the solutions to

Pi=Q2=P=Q2=0

NEW DEVELOPMENTS
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Consider the intersection of two (1, 2)-hypersurfaces in P! x P4
sP; +tQ1 = sPy +tQ2 = 0.
Let v1,...,v16 € P* denote the solutions to

Pi=Q2=P=Q2=0

@ Projection onto the first factor gives a degree 4 del Pezzo
fibration over P! (with 16 constant sections)
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FANO THREEFOLDS AND DEL PEZZO FIBRATIONS

Consider the intersection of two (1, 2)-hypersurfaces in P! x P4
sP; +tQ1 = sPy +tQ2 = 0.
Let v1,...,v16 € P* denote the solutions to

Pi=Q2=P=Q2=0

@ Projection onto the first factor gives a degree 4 del Pezzo
fibration over P! (with 16 constant sections)

e Projection onto the second factor gives a quartic threefold
V= {PlQQ — leg = 0} C ]P)4
with 16 nodes vy, ..., vig-

NEW DEVELOPMENTS



RATIONALITY IN FAMILIES:
HASSETT-PIRUTKA-T'. 2016

There exist smooth families of projective rationally connected
fourfolds X — B over k = C such that:

e For every b € B the fiber X} is a quadric surface bundle over a
rational surface S;

o For very general b € B the fiber A&} is not stably rational;
@ The set of b € B such that A} is rational is dense in B.

Two difficulties:
e Construction of special X satisfying (O) and (S)

NEW DEVELOPMENTS



RATIONALITY IN FAMILIES:
HASSETT-PIRUTKA-T'. 2016

There exist smooth families of projective rationally connected
fourfolds X — B over k = C such that:

e For every b € B the fiber X} is a quadric surface bundle over a
rational surface S;

o For very general b € B the fiber A&} is not stably rational;
@ The set of b € B such that A} is rational is dense in B.

Two difficulties:
e Construction of special X satisfying (O) and (S)

o Rationality constructions
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RATIONALITY IN FAMILIES: IMPLEMENTATION

We consider bi-degree (2,2) hypersurfaces
X C P2 x P,

Projection onto the first factor gives a quadric bundle over P2, its
degeneration divisor D C P? is an octic curve.
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SPECIAL FIBER

Let
X C P? x P3

[x:y:2] [s:tiuv]

be a bi-degree (2,2) hypersurface given by
yzs® 4+ x2t* + zyu® + F(z,y, 2)v* =0,

where
F(x,y,z2) = z? 4 y2 + 22 — 2y — 2yz — 2xz.
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SPECIAL FIBER

Let
X C P? x P3

[xry:2] [s:t:u:v]
be a bi-degree (2,2) hypersurface given by
yzs® 4+ x2t* + zyu® + F(z,y, 2)v* =0,

where
F(x,y,z2) = z? 4 y2 + 22 — 2y — 2yz — 2xz.

The discriminant curve for the projection X — P? is given by

22222 F(x,y, 2) = 0.
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o Computing H2,(C(X),Z/2): general approach by Pirutka
(2016)



SPECIAL FIBER

o Computing H2,(C(X),Z/2): general approach by Pirutka
(2016)

o Desingularization: by hand; the singular locus is a union of 6
conics, intersecting transversally
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RATIONALITY

e Produce a class in H*?(X,Z) intersecting the class of the fiber
of m: X — P? in odd degree.
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@ Then there exists a surface ¥ C X which intersects the fiber of
7w in odd degree, i.e., a multisection of 7 of odd degree.
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7w in odd degree, i.e., a multisection of 7 of odd degree.

e Then the quadric over the function field C(PP?) has a point, and
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RATIONALITY

e Produce a class in H*?(X,Z) intersecting the class of the fiber
of m: X — P? in odd degree.

Then there exists a surface ¥ C X which intersects the fiber of
7w in odd degree, i.e., a multisection of 7 of odd degree.

Then the quadric over the function field C(P?) has a point, and
X is rational.

(]

The corresponding locus is dense in the usual topology of the
moduli space.
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OTHER APPLICATIONS: HASSETT-PIRUTKA-T. 2017

Let X C P7 be a very general intersection of three quadrics. Then
X is not stably rational. Rational X are dense in moduli.
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OTHER APPLICATIONS: HASSETT-PIRUTKA-T. 2017

Let X C P7 be a very general intersection of three quadrics. Then
X is not stably rational. Rational X are dense in moduli.

Idea: Such X admit a fibration X — P2, with generic fiber a
quadric surface and octic discriminant.

NEW DEVELOPMENTS
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SMOOTH CUBIC HYPERSURFACES X3 C P"

o dim = 1 - nonrational

o dim = 2 - rational
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dim = 1 - nonrational
dim = 2 - rational

dim = 3 - nonrational, are there any stably rational examples?

e 6 o o

dim = 4 - periodicity??
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SMOOTH CUBIC HYPERSURFACES X3 C P"

dim = 1 - nonrational
dim = 2 - rational

dim = 3 - nonrational, are there any stably rational examples?

e 6 o o

dim = 4 - periodicity??

dim = 7,8 - some results by Atanas Iliev and Laurent Manivel

NEW DEVELOPMENTS



M - 20-dim moduli space of cubic fourfolds



DIMENSION 4

M - 20-dim moduli space of cubic fourfolds
two distinguished divisors

@ C14 C M - cubic fourfolds containing a normal quartic scroll
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o Ci14 C M - cubic fourfolds containing a normal quartic scroll all
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o Cg C M - a countable dense subset of these cubics is rational
(Tregub 1984, Hassett 1999)

Unirational parametrizations:

o all admit unirational parametrizations of degree 2
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DIMENSION 4

M - 20-dim moduli space of cubic fourfolds
two distinguished divisors

o Ci14 C M - cubic fourfolds containing a normal quartic scroll all
rational

o Cg C M - a countable dense subset of these cubics is rational
(Tregub 1984, Hassett 1999)

Unirational parametrizations:

o all admit unirational parametrizations of degree 2

o (Hassett-T. 2001) Cubic fourfolds with an odd degree
unirational parametrization are dense in moduli

NEW DEVELOPMENTS



SPECIAL CUBIC FOURFOLDS

ADDINGTON-HASSETT-T.-VARILLY-ALVARADO 2016

The locus of rational cubic fourfolds in C1g — special cubic fourfolds
of discriminant 18 — is dense.
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SPECIAL CUBIC FOURFOLDS

ADDINGTON-HASSETT-T.-VARILLY-ALVARADO 2016

The locus of rational cubic fourfolds in C1g — special cubic fourfolds
of discriminant 18 — is dense.

Idea: Every X € Cig admits a fibration X — P? with general fiber
a degree 6 Del Pezzo surface. A multisection of degree coprime to 3
forces rationality. The locus of such cubics is dense in Cig.

REMARK
Something like this should work for 6-dimensional cubics.
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NEW APPROACHES TO RATIONALITY

@ Derived categories (Kuznetsov, ...)

o Sheaves of categories, moduli spaces of Landau-Ginzburg
models (Katzarkov, ...)
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SUMMARY

o The specialization method of Voisin, further developed by
Colliot-Thélene—Pirutka, has triggered new advances in the
study of rationality properties of higher-dimensional varieties.
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SUMMARY

(]

The specialization method of Voisin, further developed by
Colliot-Thélene—Pirutka, has triggered new advances in the
study of rationality properties of higher-dimensional varieties.

o Stable rationality of general threefolds is essentially settled.

Rationality properties can change in smooth families in
dimension > 4.

o Rationality and stable rationality of cubics remain a challenge.

NEW DEVELOPMENTS
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