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Rationality

√
2 – Pythagoras (500BC?), by contradiction

√
3, . . . ,

√
17 – Theodorus of Cyrene (400 BC?, teacher of

Plato): stopped at 17, because his algebra was weak
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Rationality: number theory

Classical problems:

Doubling the cube, i.e., constructing 3
√

2

Trisecting the angle

Constructing regular polygons
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13 17
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Construction of regular polygons

Gauss (1796): A regular p-gon is constructible with compass and
straightedge if p is a Fermat prime, i.e., p = 22

n
+ 1; first such

primes are 3, 5, 17, 257, 65537, ...

F. Richelot (1832): Explicit construction of the 257-gon

J. Hermes (1894): Explicit construction of the 65537-gon, 10
years of work...
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Hidden symmetries

Solutions of many classical problems, and properties of numbers,
are governed by Galois groups, symmetry groups of fields.

This idea had an enormous impact on mathematics and theoretical
physics.
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Galois groups

Let K be a field, e.g., K = Q, and

f(x) = xn + an−1x
n−1 + . . .+ a1x+ a0 ∈ K[x]

a polynomial with coefficients in K. Let L ⊂ K̄ be the smallest
subfield of an algebraic closure of K containing all roots of f . The
Galois group

Gal(f) = Gal(L/K) ⊆ Sn

is the group of automorphisms of L fixing K. It is a subgroup of
the symmetric group exchanging the roots of f .

It can be
effectively computed, e.g.,

Gal(x16 + x15 + · · ·+ x+ 1) = (Z/17Z)× ' Z/16Z, this is why
the 17-gon is constructible with compass and straightedge
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Hilbert’s irreducibility

Inverse Galois Problem

Can every finite group G be realized as the Galois group of some
extension of Q?

Hilbert

Let G be a finite group. Assume that G can be realized as a Galois
group of

K = Q(x1, . . . , xr).

Then it can be realized as the Galois group of an extension over Q.

Noether (1916)

Let G be a finite group, V a representation of G over a field k.
Assume that Q(V )G is rational. Then G can be realized as the
Galois group of some extension over Q.
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Noether’s problem

E. NoxTm~. Gleicbungen mit rorgeschriebeuer Gruppe. 221 

Gleich-ngen mit; vorgeschriebener Gruppe. 

Von 

EM~Y NOSTHEr in GSttingen. 

])as Problem der Konstruktion yon Gleichungen mit vorgeschriebener 
Oruppe l~flt sich in zwei Richtungen angreifen, die man kurz ~ls die 
,,irrationale" oder die Wurzeln charakterisierende, un~ die ,,rationale" oder 
die Koeffizienten charakterisierende, bezeichnen kann. 

In der ,,irrationalen" Richtung, die funktionentheoretisch-arithmetisch 
arbeitet, liegt der Kroneckersche Satz, daft al]e Abelschen KSrper im Oe- 
bier der rationalen Zahlen KreiskSrper sind, und die entsprechenden S~tze 
fur relativ-Abelsche K~rper in bezug auf quadratische ZahlkSrper. Diese 
Siitze geben einerseits die Realisierbarkeit aUer Abelschen Oruppen in bezug 
auf diese speziellen Rationalit~tsbereiche; anderseits liefern sie die Ge- 
samt,~eit der Gleichungen and geben zugleich einen tieferen Einblick in 
die Struktur der dadurch definierten ZaMk~rper. Jeder einzelne Satz ist 
aber auf einen speziellen Rationali~tsbereich beschr~kt; and jeder neue 
Rationalit~tsbereieh effordert eine ganz neue Behandlung. 

Die ,rationale", algebraisch arbeitende Richtung stittzt sich auf den 
Hilbextschen Irreduzibilit~tssatz~ demzufolge man sieh in der Koefllzienten- 
darstellung auf Parameterdarstellung ~ e n  kaun. Hierher g e h ~  

B. die Existenz yon beliebig vielen Gleichungen mit alternierender Oruplm 
in bezug auf jeden beliebigen Ration alititsbereich. Es feldt hier natur- 
gem~ der oben gekennzeiclmete Ei~blick in die Struktur der dur~. die 
Gleichungen defraierten KSz l~  de~ V ~  ~ - , r ~ o m f l e n "  R~ehtung 
liegt aber darin, dab die Realisierbarkeit der Gruppen far a ~  R s t ~ t s -  
berde~ f ldch~/~ bewiesen wird; doch ergebel~ die his jetzt bekaunten 
Parameterdarstellungen im allgemeinen nicht die 6mamtheit der Glei- 
chungen.*) 

*) POx a~fl~are Gleichungen l ~ t  sich die Pammetmxlar~dlung der Kodrmien- 
ten erset~a dutch diejenige der Wutzeln. Kie~ hp, t neue:dinga F. ]K~tens fflr gewiase 
GrUPl~n 8. Cvrades sllgemein~te Wur~damtellung~ gegeben: ~Gleiclmug~. 8 tm Gra~m 

MsxbnmUsche Azz~e.. I,XXV](~[. 16 
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Noether’s problem

Let G be a finite group and V a representation of G over a field k.
Is V/G rational?

E.g., when k is algebraically closed?

Yes for:

Sn

abelian groups

dim(V ) ≤ 3

Unknown for:

projective representations of S5,S6,A6,A7 ↪→ PGL4(C)

SL2(F7) ⊂ SL4(C)
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Noether’s problem

Saltman (1984)

There exist groups G of order `9 and representations V such that
V/G is not rational.

Bogomolov (1988)

There exist groups G of order `6 with V/G not rational.

Obstruction lies in Galois cohomology H2
nr(k(V/G),Z/`),

Starting point of birational Almost abelian anabelian geometry
program of Bogomolov
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Rationality: algebra

A field K/k is

(R) rational: if K ' k(x0, . . . , xn) for some n, i.e., if K is a
purely-transcendental extension of k

(S) stably rational: if K(x0, . . . , xn)/k is rational, for some n

(U) unirational: if K ⊂ k(x0, . . . , xn), for some n
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Rationality: geometry

A projective algebraic variety X/k “is” the set of solutions of a
system of homogeneous polynomial equations with coefficients in k,
e.g.,

x2 + y2 = z2, t(x2 + y2 + z2) = xyz, ...

The standard example is projective space Pn, when there are no
equations.

A fundamental problem is to determine how close an algebraic
variety X is to Pn.

Introduction
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Rationality: geometry

(R) rational: if X ∼ Pn for some n

(S) stably rational: if X × Pn is rational, for some n

(U) unirational: if Pn 99K X, for some n

I.e., the function field k(X) is rational, stably rational, or
unirational. This notion depends on k.

(R)⇒ (S)⇒ (U)
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Conics

All rational solutions (rational points) of

x2 + y2 = 1

are given by

x =
1− t2

1 + t2
, y =

2t

1 + t2
.

Rational curve: parametrized by rational functions in one variable

Classical results



Conics
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Curves: Lüroth 1876

Theorem

In dimension 1, rationality = stable rationality=unirationality.

Classical results



Surfaces: Castelnuovo, Enriques

Theorem

In dimension 2, over C,

rationality = stable rationality = unirationality

This can fail over nonclosed ground-fields k.

Approach: via classification.

Classical results
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Classification schemes

via dimension,

via degree (in some embedding into projective space); e.g.,

Fano, general type, intermediate type,

depending on ampleness of the (anti)canonical class KX ,

Geometric invariants: rational connectedness, i.e., every pair of
points can be connected by a rational curve, or other
properties of spaces of rational curves on X.
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Classification in low dimensions

dim Fano Intermediate type General type

1 P1 elliptic curves C, g(C) ≥ 2

2 P2,P1 × P1, K3 surfaces : X4 ⊂ P3 ...
X2,2 ⊂ P4, X3 ⊂ P3 abelian surfaces, ...

3 ∼ 120 families Calabi−Yau varieties ...

Classical results



Quadric surfaces

Classical results



Cubic surfaces

Classical results



Cubic surfaces

How to parametrize x3 + y3 + z3 + w3 = 0?

Elkies:

x = −(s+ r)t2 + (s2 + 2r2)t− s3 + rs2 − 2r2s− r3
y = t3 − (s+ r)t2 + (s2 + 2r2)t+ rs2 − 2r2s+ r3

z = −t3 + (s+ r)t2 − (s2 + 2r2)t+ 2rs2 − r2s+ 2r3

w = (s− 2r)t2 + (r2 − s2)t+ s3 − rs2 + 2r2s− 2r3

What about x3 + y3 + z3 + 2w3 = 0?

Obstruction to rationality is nontriviality of Galois cohomology:

H1(Q,Pic(X̄)).

Classical results
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Del Pezzo surfaces over nonclosed fields

Del Pezzo surfaces = 2-dimensional Fano varieties

Theorem

Let X be a smooth del Pezzo surface.

deg(X) ≥ 5: If X(k) 6= ∅ then X is k-rational.

deg(X) = 4, 3: If X(k) 6= ∅ then X is k-unirational.

If deg(X) = 1 then X(k) 6= ∅. It is unknown whether or not X is
unirational. We don’t know whether or not rational points are
Zariski dense.

Classical results
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Conic bundles over nonclosed fields

Example

Let X be a conic bundle over P1, over a field k, given by

x2 − ay2 = f(s)z2, deg(f) = 3, disc(f) = a,

with f irreducible over k. Then X is nonrational but stably
rational.

Classical results



Threefolds

The Minimal Model Program implies that rationally connected
3-folds are of three types:

Fano 3-folds

Del Pezzo fibrations over P1

Conic bundles over a rational surface.

Many (all??) of these are unirational.

Lüroth’s problem

Does unirationality imply rationality?

There were numerous unsuccessful attempts to find
counterexamples.

Classical results
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Lüroth’s problem

Does unirationality imply rationality?

There were numerous unsuccessful attempts to find
counterexamples.

Classical results



Fano 1915

Classical results



Counterexamples to Lüroth’s problem

Major developments in 1971-72:

Iskovskikh-Manin: quartic in P4 via birational rigidity

Clemens-Griffiths: cubic in P4 via intermediate Jacobians

Artin-Mumford: conic bundles via unramified cohomology

The 1970s
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Birational rigidity

This approach stimulated major developments in algebraic
geometry.

Reid, Corti, Pukhlikov, Cheltsov

A smooth hypersurface of degree n in Pn is birationally rigid
(de Fernex, 2013)

The 1970s
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Intermediate Jacobians

Theorem

If the intermediate Jacobian IJ(X) of a threefold X is not a product
of Jacobians of curves then X is nonrational.

Implementation:

Cubic threefolds (Clemens–Griffiths)

Intersection of 3 quadrics and conic bundles (Beauville)

Del Pezzo surface fibrations over P1 (Alexeev, Vassil Kanev)

Limitation: Does not detect failure of stable rationality

The 1970s
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Specialization method

Idea (Clemens 1974): Let

φ : X → B

be a family of Fano threefolds, with smooth generic fiber. Assume
that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:

(S) Singularities: X has at most rational double points

(O) Obstruction: the intermediate Jacobian IJ(X̃0) (of the
resolution of singularities X̃0) is not a product of Jacobians of
curves.

Then a general fiber Xb is not rational.

Implementation (Beauville 1977): nonrationality of certain
Fano varieties

The 1970s
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Brauer group

Theorem (Artin-Mumford)

Let X → S be a conic bundle over a smooth projective rational
surface with discriminant a smooth curve

D = trj=1Dj ⊂ S,

and with g(Dj) ≥ 1 for all j. Then

H2
nr(k(X),Z/2) = (Z/2)r−1.

Implementation: A special conic bundle over P2.

The 1970s
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Cycle-theoretic tools: CH0

CH0(Xk) is the abelian group generated by zero-dimensional
subvarieties x ∈ X (e.g., points x ∈ X(k)), modulo k-rational
equivalence.

Assuming X(k) 6= ∅, there is a surjective homomorphism

deg : CH0(Xk)→ Z.

For which X is this an isomorphism?

Example

X a unirational or rationally-connected variety over k = C.

New developments



CH0-triviality

A projective X/k is universally CH0-trivial if for all k′/k

CH0(Xk′)
∼−→ Z

For example, smooth k-rational varieties are universally
CH0-trivial. Unirational or rationally-connected varieties are not
necessarily universally CH0-trivial. Varieties with nontrivial
unramified cohomology groups are not universally CH0-trivial.

New developments
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Specialization method
Voisin 2014, Colliot-Thélène–Pirutka 2015

Let
φ : X → B

be a flat projective morphism of complex varieties with smooth
generic fiber. Assume that there exists a point b ∈ B such that the
fiber

X := φ−1(b)

satisfies the following conditions:

(S) Singularities: X has mild singularities

(O) Obstruction: the group H2
nr(C(X),Z/2) is nontrivial.

Then a very general fiber of φ is not stably rational.

New developments



Specialization method: First applications

Very general varieties below are not stably rational:

Quartic double solids X → P3 with ≤ 7 double points
(Voisin 2014)

Quartic threefolds (Colliot-Thélène–Pirutka 2014)

Sextic double solids X → P3 (Beauville 2014)

Fano hypersurfaces of high degree (Totaro 2015)

Cyclic covers X → Pn of prime degree
(Colliot-Thélène–Pirutka 2015)

Cyclic covers X → Pn of arbitrary degree (Okada 2016)

New developments



Conic bundles over rational surfaces

Theorem (Hassett-Kresch-T. 2015)

A very general conic bundle X → S, over a rational surface S, with
discriminant of sufficiently high degree, e.g., X → P2, with
discriminant a curve of degree ≥ 6, is not stably rational.

Theorem (Kresch-T. 2017)

Similar result for 2-dimensional Brauer-Severi bundles over
rational surfaces.

New developments
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Del Pezzo fibrations

Theorem (Hassett-T. 2016)

A very general fibration π : X → P1 in quartic del Pezzo surfaces
which is not rational and not birational to a cubic threefold is not
stably rational.

Theorem (Krylov-Okada 2017)

A very general del Pezzo fibration π : X → P1 of degree 1, 2, or 3
which is not rational and not birational to a cubic threefold is not
stably rational.

New developments
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Fano threefolds

Theorem (Hassett-T. 2016)

A very general nonrational Fano threefold X over k = C which is
not birational to a cubic threefold is not stably rational.

New developments



Fano threefolds: idea and implementation

Find suitable degenerations with mild singularities and birational
to conic bundles.

Nonrational Fano threefolds with

Pic(V ) = −KV Z and d = d(V ) = −K3
V :

d = 2 sextic double solid

d = 4 quartic

d = 6 intersection of a quadric and a cubic

d = 8 intersection of three quadrics

d = 10 section of Gr(2, 5) by two linear forms and a quadric

d = 14 birational to a cubic threefold

New developments



Fano threefolds: degenerations

From general quartic del Pezzo X → P1 to Fano threefolds V :

d = 2: h(X ) = 22⇒ sextic double solid V with 32+4 nodes

d = 4: h(X ) = 20⇒ quartic threefold with 16 nodes

d = 6: h(X ) = 18⇒ quadric ∩ cubic with 8 nodes

d = 8: h(X ) = 16⇒ intersection of three quadrics with 4 nodes

d = 10: h(X ) = 14⇒ specialization of a V with 2 nodes

The other families of Fano threefolds are conic bundles, but not
very general, as in the theorem above. Additional work is needed.

New developments
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Fano threefolds and del Pezzo fibrations

Consider the intersection of two (1, 2)-hypersurfaces in P1 × P4:

sP1 + tQ1 = sP2 + tQ2 = 0.

Let v1, . . . , v16 ∈ P4 denote the solutions to

P1 = Q2 = P2 = Q2 = 0

Projection onto the first factor gives a degree 4 del Pezzo
fibration over P1 (with 16 constant sections)

Projection onto the second factor gives a quartic threefold

V := {P1Q2 −Q1P2 = 0} ⊂ P4

with 16 nodes v1, . . . , v16.

New developments
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Rationality in families:
Hassett-Pirutka-T. 2016

There exist smooth families of projective rationally connected
fourfolds X → B over k = C such that:

For every b ∈ B the fiber Xb is a quadric surface bundle over a
rational surface S;

For very general b ∈ B the fiber Xb is not stably rational;

The set of b ∈ B such that Xb is rational is dense in B.

Two difficulties:

Construction of special X satisfying (O) and (S)

Rationality constructions

New developments
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Rationality in families: implementation

We consider bi-degree (2, 2) hypersurfaces

X ⊂ P2 × P3.

Projection onto the first factor gives a quadric bundle over P2, its
degeneration divisor D ⊂ P2 is an octic curve.

New developments



Special fiber

Let
X ⊂ P2

[x:y:z] × P3
[s:t:u:v]

be a bi-degree (2, 2) hypersurface given by

yzs2 + xzt2 + xyu2 + F (x, y, z)v2 = 0,

where
F (x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2xz.

The discriminant curve for the projection X → P2 is given by

x2y2z2F (x, y, z) = 0.

New developments
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Special fiber

Computing H2
nr(C(X),Z/2): general approach by Pirutka

(2016)

Desingularization: by hand; the singular locus is a union of 6
conics, intersecting transversally

New developments
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Rationality

Produce a class in H2,2(X,Z) intersecting the class of the fiber
of π : X → P2 in odd degree.

Then there exists a surface Σ ⊂ X which intersects the fiber of
π in odd degree, i.e., a multisection of π of odd degree.

Then the quadric over the function field C(P2) has a point, and
X is rational.

The corresponding locus is dense in the usual topology of the
moduli space.

New developments



Rationality

Produce a class in H2,2(X,Z) intersecting the class of the fiber
of π : X → P2 in odd degree.

Then there exists a surface Σ ⊂ X which intersects the fiber of
π in odd degree, i.e., a multisection of π of odd degree.

Then the quadric over the function field C(P2) has a point, and
X is rational.

The corresponding locus is dense in the usual topology of the
moduli space.

New developments



Rationality

Produce a class in H2,2(X,Z) intersecting the class of the fiber
of π : X → P2 in odd degree.

Then there exists a surface Σ ⊂ X which intersects the fiber of
π in odd degree, i.e., a multisection of π of odd degree.

Then the quadric over the function field C(P2) has a point, and
X is rational.

The corresponding locus is dense in the usual topology of the
moduli space.

New developments



Rationality

Produce a class in H2,2(X,Z) intersecting the class of the fiber
of π : X → P2 in odd degree.

Then there exists a surface Σ ⊂ X which intersects the fiber of
π in odd degree, i.e., a multisection of π of odd degree.

Then the quadric over the function field C(P2) has a point, and
X is rational.

The corresponding locus is dense in the usual topology of the
moduli space.

New developments



Other applications: Hassett–Pirutka–T. 2017

Let X ⊂ P7 be a very general intersection of three quadrics. Then
X is not stably rational. Rational X are dense in moduli.

Idea: Such X admit a fibration X → P2, with generic fiber a
quadric surface and octic discriminant.

New developments
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Smooth cubic hypersurfaces X3 ⊂ Pn

dim = 1 - nonrational

dim = 2 - rational

dim = 3 - nonrational, are there any stably rational examples?

dim = 4 - periodicity??

dim = 7, 8 - some results by Atanas Iliev and Laurent Manivel

New developments
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Dimension 4

M - 20-dim moduli space of cubic fourfolds

two distinguished divisors

C14 ⊂M - cubic fourfolds containing a normal quartic scroll all
rational

C8 ⊂M - a countable dense subset of these cubics is rational
(Tregub 1984, Hassett 1999)

Unirational parametrizations:

all admit unirational parametrizations of degree 2

(Hassett-T. 2001) Cubic fourfolds with an odd degree
unirational parametrization are dense in moduli

New developments
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Special cubic fourfolds

Addington–Hassett–T.–Várilly-Alvarado 2016

The locus of rational cubic fourfolds in C18 – special cubic fourfolds
of discriminant 18 – is dense.

Idea: Every X ∈ C18 admits a fibration X → P2 with general fiber
a degree 6 Del Pezzo surface. A multisection of degree coprime to 3
forces rationality. The locus of such cubics is dense in C18.

Remark

Something like this should work for 6-dimensional cubics.

New developments
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New approaches to rationality

Derived categories (Kuznetsov, ...)

Sheaves of categories, moduli spaces of Landau-Ginzburg
models (Katzarkov, ...)

New developments



Summary

The specialization method of Voisin, further developed by
Colliot-Thélène–Pirutka, has triggered new advances in the
study of rationality properties of higher-dimensional varieties.

Stable rationality of general threefolds is essentially settled.

Rationality properties can change in smooth families in
dimension ≥ 4.

Rationality and stable rationality of cubics remain a challenge.

New developments
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