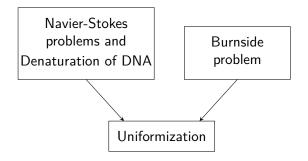
Categories and Filtrations

Ludmil Katzarkov

University of Miami

July 10, 2017

(미) (권) (분) (분) 분 (오) (기/1)



Navier-Stokes

For V - velocity, P - pressure:

$$\frac{\partial V}{\partial t} + (V \cdot \nabla)V + \frac{1}{P}\nabla P = \nu \Delta V + f(x)$$

$$abla V = 0$$

 $\Downarrow L. D. Landau$
 $\frac{dA}{dt} = a\mu + b|A|^2 + h.o.t.$

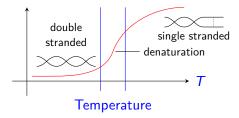
This produces traveling waves.

$$\bigwedge$$

イロン イヨン イヨン イヨン 三日

3/1

Denaturation of DNA



This is described by a one-dimensional lattice and the following lattice ODE.

$$\frac{d^2 u_n}{dt^2} + W'(u_n) = V'(u_{n+1} - u_n) - V'(u_n - u_{n-1})$$

$$W \text{ - on-site potential}$$

$$V \text{ - interaction potential}$$

PDE

Method of Central Manifolds

 \Downarrow

ODE

$$\frac{1}{J^2} \frac{d^2 y}{dx^2} = V'(y(x+1) - y(x)) - V'(y(x) - y(x-1))$$
$$x = n - \frac{t}{2}$$
$$u_n(x) = y$$

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 0 へ (> 5/1

Recall the method of central manifolds.

Central manifolds of equilibrium points $= \begin{cases} orbits & orbits \\ orbits & orbits \\ or repulsion of unstable manifold \\ or repulsion of unstable manifold \\ orbits & orbits \\ or$

Central manifold is given by the linearization of | eigenvalues λ_i with $\text{Re}\lambda_i = 0$ or $\lambda_i = 0$ |.

 $\lambda_i = 0 \Leftrightarrow$ slow manifold spanned by eigenvectors

Recall

If we have a dynamical system

$$\frac{dx}{dt} = f(x) \xrightarrow{\text{linearization}} \frac{dx}{dt} = Ax$$

$$A_0 \text{ - eigenvectors with } \lambda = 0$$

$$A_0 \qquad \text{tangent to} \\ \text{slow manifold}$$

Recall that Burnside group is defined as

$$B(n,d) = \{F^n | x^d = 1, \forall x \in F^n\}$$

 F^n is a free group with *n* generators.

 $B(n,2) = \mathbb{Z}_2^n$ $B(n,3) = \text{finite with order } 3^C$, where *C* depends on the nilpotency class B(n,4) = finite (Sanov) $B(n,5) = ? (n \ge 2)$ B(n,6) = finite (M. Hall)

Question

Can we find $n \ge 2$ and d so that B(n, d) is infinite?

Theorem (Adian, Novikov)

 \exists infinite B(n, d), where d is odd and $d \ge 4381$.

Theorem (Olshanski)

Let Γ be a hyperbolic group. Then $\Gamma(d)$ is infinite for d >> 0.

 $\Gamma = \pi_1(C)$, C - Riemann surface

Theorem (Zelmanov)

B(n, d) is not residually finite if infinite.

Question (Zelmanov)

Can we find $n_1 > n_2$ so that $B(n_1, m)$ is infinite and $B(n_2, m)$ is finite?

Recall:

Theorem (Riemann)

Let X be a one-dim smooth projective variety. Then $\widetilde{X} = \mathbb{C}, \mathbb{P}^1, \mathbb{D}$.

If dim $_{\mathbb{C}}X = 2$, then $\widetilde{X} = \mathbb{C} \times \mathbb{C}, \mathbb{P}^2, \mathbb{D} \times \mathbb{D}, \dots$

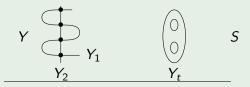
Question (Shafarevich)

 \widetilde{X} is hol. convex for X a smooth projective variety.

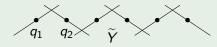
Recall:

Definition

A complex space M is **hol. convex** if \forall sequence of q_1, \ldots, q_n without a limit point, \exists a hol. function unbounded on it.



Let $\operatorname{Im}(\operatorname{H}_1(Y_1, \mathbb{Z}) \to \operatorname{H}_1(S, \mathbb{Z})) = 0$ $\operatorname{Im}(\operatorname{H}_1(Y_2, \mathbb{Z}) \to \operatorname{H}_1(S, \mathbb{Z})) = 0$ and $\operatorname{Im}(\operatorname{H}_1(Y, \mathbb{Z}) \to \operatorname{H}_1(S, \mathbb{Z})) = \infty$



 $\Rightarrow \widetilde{S}$ is not holomorphically convex.

But strictness of MHS implies

$$\mathsf{H}_1(S) o \pi_1^{\mathsf{Malcer}}(S)$$

Theorem (K)

Let S be a smooth projective variety and $\pi_1(S)$ nilpotent. Then \tilde{S} is holomorphically convex.

$$\mathsf{H}_1(S,\mathbb{Z}) o \pi_1^{\mathsf{Malcer}}(S)$$

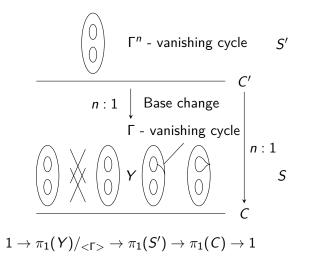
Theorem (EKPR)

Let X be a smooth projective variety and $\pi_1(X) \subset GL(n, \mathbb{C})$. Then \widetilde{X} is holomorphically convex.

Remark

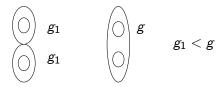
This technique could lead to $\pi_1(X)$ residually finite.

Uniformization Burnside problem



Theorem (Zelmanov)

 $\pi_1(S')$ is not residually finite.

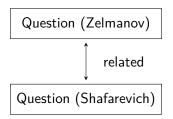


イロン イ団 とく ヨン イヨン

э

16/1

If $\Gamma_{g_1}(m)$ is finite but $\Gamma_g(m)$ is infinite. $\Rightarrow \widetilde{S}$ is not holomorphically convex.



Uniformization and Central Manifolds

"Hodge" theory of central manifolds

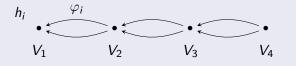
 \rightarrow Vector or Higgs bundles

Example	
Solutions of	$\frac{\partial H}{\partial t} = \Lambda F + x$
	\Downarrow center manifold
	ODE

In fact:

Theorem (Haiden, Katzarkov, Kontsevich, Pandit)

This ODE is connected with a quiver:



$$\mathcal{J}_{i}h_{i}^{-1}\frac{dh_{i}}{dt} = \sum_{\alpha:i \to j} h_{i}^{-1}\varphi_{\alpha}^{+}h_{j}\varphi_{\alpha} - \sum_{\alpha:i \to j} \varphi_{\alpha}h_{j}^{-1}\varphi_{\alpha}^{+}h_{i}$$

Theorem (HKKP)

The asymptotics of ODE define a filtration on the central manifold Z.

The dimension of Z is from $d = 1 + \cdots + 1$ to $k_1^2 + \cdots + k_d^2$. The asymptotics are

$$\mathbb{R}t + \mathbb{R}\log(t) + \cdots + \mathbb{R}\log(\log(\cdots(t))).$$

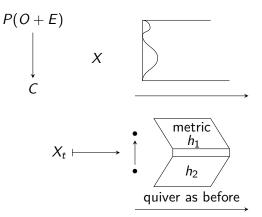
The define a filtration \mathcal{F}_t .

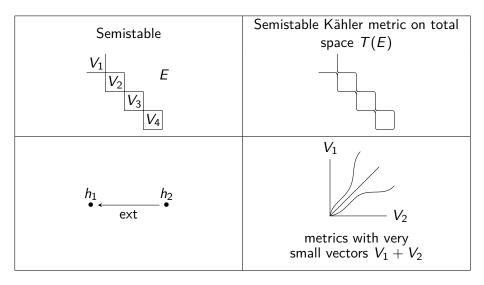
Properties

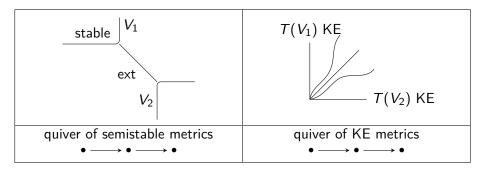
- (1) ${\cal F}$ satisfies Griffiths transversality.
- (2) \mathcal{F} satisfies functoriality.
- (3) \mathcal{F} satisfies strictness.
- (4) The "monodromy" action on Z is semi-simple.

Theorem (KP)

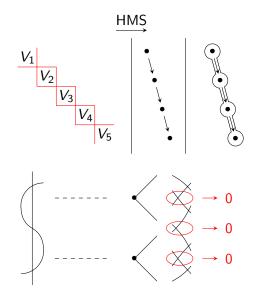
Monge-Ampère Equation \Rightarrow ODE.







Recall we have a HMS.



<□> <問> < E> < E> E のQ(* 25/1)

$$\pi_1(Y_i) \longrightarrow \mathsf{Fuk}_{FS}(Y_i) = MF$$
 \downarrow Mean curvature flow

 \exists central manifold with all the properties:

- 1 Functoriality
- 2 Strictness
- 3 Semi-stability

Expectation

1), (2), (3) imply the Shafarevich conjecture.

We have the following:

Theorem (HKKP)

Consider \mathbb{R}^n as \mathbb{C}^{*n}/S^{1n} and V = grad f. Let f be a convex function defined by

$$f = \sum C_{\alpha} \cdot \langle u_{\alpha}, V \rangle + \langle u, V \rangle,$$

where $u_{\alpha}, u \in \mathbb{R}^{n}$. Then

 $V = V_0t + V_1\log(t) + \cdots + V_n\log(\log(\cdots(t))) + O(1).$

Remark

For more complicated functions, we get different solutions.

Theorem (HKKP)

In the above situation, we have a central manifold Z, with $1 \leq \dim Z \leq n$.

Theorem (HKKP)

In the case G/K, we have the same for the gradient equation.

Conjecture

The same holds for CAT(W).

If this is proven, we can directly work with Burnside groups.

If $B(n_1, m)$ does not have central manifold, $B(n_2, m)$ does not have either. No jumps in cardinality. We have a sequence (**):

$PDE \rightarrow ODE \rightarrow Z$ - central manifold

↓ CATEGORY

Example

- Donaldson-YM equation
- Mean curvature equation
- Monge-Ampère equation

Definition

PDE satisfying (**) is called **categorical**.

Question

Find a sufficient condition so that PDE is categorical.

This gives additional structures on solutions e.g. satisfying:

{ Transversality Functoriality Semi-simplicity

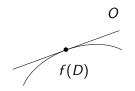
イロン イヨン イヨン イヨン 三日

31/1

Recall: Classical SL_2 nilpotent orbit theorem says that for

$$f: D \rightarrow U,$$

 \exists a nilpotent orbit *O* s.t.



O approximates f(D).

Consider a spherical functor S. Let $D^{b}(Q)$ be a quiver category and \dot{h} the flow over metrized objects.

Conjecture

The superposition of \dot{h} and the flow of S define a new filtration.

 $D^{b}(A_{1}) = \{V\}$, N-PL. This is the standard Hodge filtration.

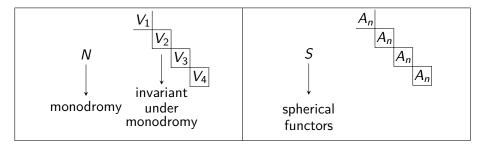
Example 2

S-localization. We get a bifurcation diagram for h.

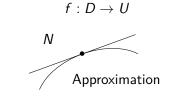
Example 3

Families of matrix factorizations.

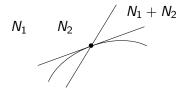
We have the following parallel:



We have the classical SL₂-Nilpotent Orbit Theorem:



We also have:

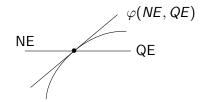


We combine two flows:

(1) The flow given by Nahm's equation - NE.

(2) The "Quiver equation" - QE.

$$\mathcal{J}_i h_i^{-1} \frac{dh_i}{dt} = \sum_{\alpha: i \to j} h_i^{-1} \varphi_{\alpha}^+ h_j \varphi_{\alpha} - \sum_{\alpha: i \to j} \varphi_{\alpha} h_j^{-1} \varphi_{\alpha}^+ h_i$$



Conjecture

We get a new "refined" filtration.

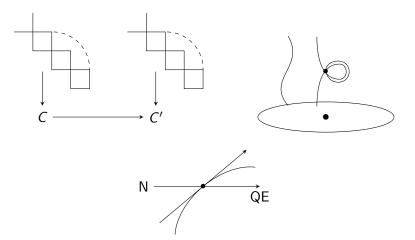
In terms of stability conditions, we get:

$$\iint_{\Gamma,h} e^h e^{(f)} dz dh \quad \longleftrightarrow \quad \sum_{k,n,m} a_k z^k b_n \log(z) c_m(\log(\log(\cdots(h))))$$

Conjecture

The refined filtration depends on Ospec $D^{b}(\mathcal{C}, A_{n})$.

We give a geometric example.



Proposition

We have a refined filtration on $D^{b}(A_{n}, C)$.

In general, we have:

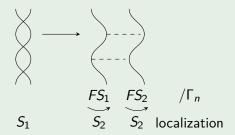
- (1) A flow ${\mathcal C}$ which defines ODE (associated with a quiver).
- 2) Several (spherical) functors S_1, S_2, \ldots, S_n .

₩

This defines:

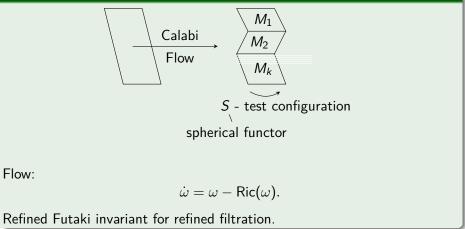
- A) A refined filtration.
- B) A new "Futaki" type of invariant minimizing the refined filtration.

Mean curvature + 2 spherical functors

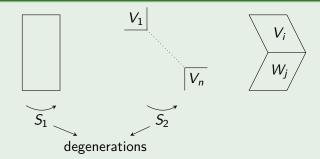


We get a new filtration with strictness and functoriality. The initial flow is:

$$\dot{c} = -d \operatorname{Arg}(\Omega_{|c}) \rfloor \omega^{-1}$$



イロン イロン イヨン イヨン 三日



Flow: Yang Mills Higgs

- Semi-stable degenerations
- Functoriality
- Strictness

The End