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Overview

Navier-Stokes
problems and Burnside

Denaturation of DNA problem
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Uniformization




For V - velocity, P - pressure:

v
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This produces traveling waves.
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Denaturation of DNA

X

single stranded

T

double
stranded
—r— denaturation
XX
—/
Temperature

This is described by a one-dimensional lattice and the following lattice

ODE.

d?u,

— "+ W (up) = V' (ups1 — un) — V'(up — up—1)

dt?

W - on-site potential

V - interaction potential




Method of Central Manifolds l
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Recall the method of central manifolds.

Central manifolds
S . =< orbits
of equilibrium points

neither attraction of stable manifold
nor repulsion of unstable manifold

Central manifold is given by the linearization of | eigenvalues \; with
Re)\;:Oor)\,-:O ‘

Ai = 0 < slow manifold spanned by eigenvectors )
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central

long term dynamics .
manifold

Recall

i
2

If we have a dynamical system

dx linearization  dX
= Ax

P _f = _
e dt

Ao - eigenvectors with A =0

tangent to
Ao | slow manifold




Burnside theory

Recall that Burnside group is defined as

B(n,d) = {F"|x? = 1,Vx € F"} )

F" is a free group with n generators.

(n,2) =

(n,3) = ﬁnlte with order 3¢, where C depends on the nilpotency class
(n,4) = f|n|te (Sanov)
(n,5) =7 (n>2)
(n,6) = f|n|te (M. Hall)
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Can we find n > 2 and d so that B(n, d) is infinite?

Theorem (Adian, Novikov)
3 infinite B(n, d), where d is odd and d > 4381.

Theorem (Olshanski)
Let T be a hyperbolic group. Then I'(d) is infinite for d >> 0.




= m1(C), C - Riemann surface

Theorem (Zelmanov)

B(n, d) is not residually finite if infinite.

Question (Zelmanov)

Can we find n; > np so that B(ni, m) is infinite and B(nz, m) is finite?
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Recall:

Theorem (Riemann)

Let X be a one-dim smooth projective variety. Then X = C,P!, D.

If dimcX =2, then X = C x C,P2,D x D, ...

Question (Shafarevich)

X is hol. convex for X a smooth projective variety.

Recall:

Definition

A complex space M is hol. convex if V sequence of g1, ..., g, without a
limit point, 9 a hol. function unbounded on it.

11/1



Example

. 5
Y1

Yo Ye

Let Im(Hy(Y1,Z) — Hi(S,Z))
Im(H1(Y2,Z) — H1(S,Z))
and Im(H1(Y,Z) — Hy(S,Z))

= S is not holomorphically convex.

Il
g © o
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But strictness of MHS implies

|m(H1(Y1,Z) — Hl(S,Z))
|m(H1(Y2,Z) — Hl(S,Z))

4
and Im(H1(Y,Z) — Hi(S,Z)) =0

0
0
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Hl(S) N 71_{\/Ialcer(S)

Let S be a smooth projective variety and 71(S) nilpotent.
Then S is holomorphically convex.

Hi(S,Z) — mifaleer(s)

Theorem (EKPR)

Let X be a smooth projective variety and m1(X) C GL(n,C).
Then X is holomorphically convex.

This technique could lead to 71 (X) residually finite.

14/1



Uniformization Burnside problem

" - vanishing cycle s/

CI
n:l J Base change

I" - vanishing cycle

X606 | -

1— 7r1(Y)/<r> — 7T1(5/) — 7T1(C) —1
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Theorem (Zelmanov)

m1(S’) is not residually finite.

g1<g

If [g,(m) is finite but ['g(m) is infinite.
= S is not holomorphically convex.
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Question (Zelmanov)

related

Question (Shafarevich)
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Uniformization and Central Manifolds

“Hodge" theory of central manifolds
— Vector or Higgs bundles

Vi

Vo,  F
V3

|5

Example

Solutions of o4
— =NANF +x
ot

| center manifold

ODE




In fact:

Theorem (Haiden, Katzarkov, Kontsevich,Pandit)
This ODE is connected with a quiver:

Vl V2 V3 V4

dh;

/[ h=Loth: o

dt a;ﬂ- i Pall®
- X Soahj_l‘;ozhi

ai—+f

Jiht
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Theorem (HKKP)
The asymptotics of ODE define a filtration on the central manifold Z.

The dimension of Zisfromd=1+---+1to k12+-~-+k§..
The asymptotics are

Rt 4+ Rlog(t) + - - - + Rlog(log(- - - (t)))-

The define a filtration F;.
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Properties

@ F satisfies Griffiths transversality.
@ F satisfies functoriality.
@ F satisfies strictness.

@ The “monodromy” action on Z is semi-simple.

21/1



Theorem (KP)
Monge-Ampére Equation = ODE.

P(O + E)

N m

quiver as before
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Semistable Kahler metric on total

Semistable space T(E)
Vi
Vo E
V3
ﬁ‘
Vi
hy ha

metrics with very
small vectors Vi + V>




stable 2
Vo

T(V1) KE

T(Vs) KE

quiver of semistable metrics

e ——> 06— 0

quiver of KE metrics

o ——> 00— 0




Recall we have a HMS.

%1

Vs

V3

Vg




7T1(Y,') — FUkFS(Yi) = MF

J Mean curvature flow

3 central manifold with all the properties:
@ Functoriality
@ Strictness

@ Semi-stability

Expectation

@, @ @ imply the Shafarevich conjecture.
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Central manifold and Zelmanov conjecture

We have the following:

Theorem (HKKP)

Consider R" as C*"/S'" and |V = grad f |
Let f be a convex function defined by

f=> Co<uag,V>+<uV>,

where Uy, u € R".
Then

V = Vot + Vi log(t) + - - - + Vi log(log(- - - ())) + O(1).




For more complicated functions, we get different solutions.

Theorem (HKKP)

In the above situation, we have a central manifold Z, with 1 < dimZ < n.

Theorem (HKKP)

In the case G/K, we have the same for the gradient equation.




The same holds for CAT(W). \

If this is proven, we can directly work with Burnside groups.

If B(n1, m) does not have central manifold, B(n2, m) does not have either.
No jumps in cardinality.
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We have a sequence (**):

PDE — ODE — Z - central manifold

I
CATEGORY

e Donaldson-YM equation

e Mean curvature equation

e Monge-Ampére equation
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Definition
PDE satisfying (**) is called categorical.

Find a sufficient condition so that PDE is categorical.

This gives additional structures on solutions e.g. satisfying:

Transversality
Functoriality
Semi-simplicity
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Recall: Classical SLy nilpotent orbit theorem says that for
f:D— U,

3 a nilpotent orbit O s.t.

O approximates f(D).



Consider a spherical functor S. Let Db(Q) be a quiver category and h the
flow over metrized objects.

The superposition of h and the flow of S define a new filtration. \
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DP(A;) = {V}, N-PL. This is the standard Hodge filtration.

S-localization. We get a bifurcation diagram for h. l
Families of matrix factorizations. \
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Multi SLo-Nilpotent Orbit Teorem

We have the following parallel:

Vi An
Va An
N Vs S A,
Ll m | z
invariant
monodromy  under spherical
monodromy functors
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We have the classical SLy-Nilpotent Orbit Theorem:

f:D—U

Approximation

We also have:

N1 + N

36
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We combine two flows:
@ The flow given by Nahm's equation - NE.

@ The "“Quiver equation” - QE.

dh; _ _
! = > hi 1902,7]9001_ > @ahj lcp;rh,-

dt ai—j ai—j

p(NE, QE)
/% o

We get a new “refined” filtration. \
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In terms of stability conditions, we get:

// e"eNdzdh ~rs Y azkbylog(z)cm(log(log(- - (h))))
rh k,n,m N

The refined filtration depends on Ospec DP(C, A,).

N

NN
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We give a geometric example.

Proposition
We have a refined filtration on DP(A,,C).
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In general, we have:
@ A flow C which defines ODE (associated with a quiver).

@ Several (spherical) functors S1, Sz, ..., S,.

4
This defines:
A) A refined filtration.

B) A new “Futaki” type of invariant minimizing the refined filtration.
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Example 1
Mean curvature + 2 spherical functors

FS1 FS; I

~—T7F ~—2T7F
S1 S, S, localization

We get a new filtration with strictness and functoriality. The initial flow is:

c=—d Arg(Q‘C)Jw_l
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Example 2

Calabi

Flow

5BE

S - test configuration
\

spherical functor

Flow:
w = w — Ric(w).

Refined Futaki invariant for refined filtration.
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Example 3

~—_ 7 ~—_ 7

S S
1 2

degenerations

Flow: Yang Mills Higgs

- Semi-stable degenerations
- Functoriality

- Strictness
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The End



