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Overview

Navier-Stokes
problems and

Denaturation of DNA
Burnside
problem

Uniformization
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Navier-Stokes

For V - velocity, P - pressure:

∂V
∂t + (V · ∇)V +

1
P∇P = ν∆V + f (x)

∇V =0
⇓ L. D. Landau

dA
dt =aµ+ b|A|2 + h.o.t.

This produces traveling waves.
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Denaturation of DNA

T
Temperature

denaturation

double
stranded single stranded

This is described by a one-dimensional lattice and the following lattice
ODE.

d2un
dt2 + W ′(un) = V ′(un+1 − un)− V ′(un − un−1)

W - on-site potential
V - interaction potential
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PDE
Method of Central Manifolds

⇓

ODE

1
J 2

d2y
dx2 = V ′(y(x + 1)− y(x))− V ′(y(x)− y(x − 1))

x = n − t
2

un(x) = y
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Recall the method of central manifolds.

Central manifolds
of equilibrium points =

{
orbits

∣∣∣∣∣neither attraction of stable manifold
nor repulsion of unstable manifold

}

Central manifold is given by the linearization of | eigenvalues λi with
Reλi = 0 or λi = 0 |.

λi = 0⇔ slow manifold spanned by eigenvectors
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t =∞

central
manifold

long term dynamics

Recall
If we have a dynamical system

dx
dt = f (x)

linearization−−−−−−−−→ dx
dt = Ax

A0 - eigenvectors with λ = 0

tangent to
slow manifoldA0
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Burnside theory

Recall that Burnside group is defined as

B(n, d) = {F n|xd = 1, ∀x ∈ F n}

F n is a free group with n generators.

B(n, 2) = Zn
2

B(n, 3) = finite with order 3C , where C depends on the nilpotency class
B(n, 4) = finite (Sanov)
B(n, 5) = ? (n > 2)
B(n, 6) = finite (M. Hall)
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Question
Can we find n > 2 and d so that B(n, d) is infinite?

Theorem (Adian, Novikov)
∃ infinite B(n, d), where d is odd and d > 4381.

Theorem (Olshanski)
Let Γ be a hyperbolic group. Then Γ(d) is infinite for d >> 0.
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Example
Γ = π1(C), C - Riemann surface

Theorem (Zelmanov)
B(n, d) is not residually finite if infinite.

Question (Zelmanov)
Can we find n1 > n2 so that B(n1,m) is infinite and B(n2,m) is finite?
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Uniformization

Recall:

Theorem (Riemann)
Let X be a one-dim smooth projective variety. Then X̃ = C,P1,D.

If dimCX = 2, then X̃ = C× C,P2,D× D, . . .

Question (Shafarevich)
X̃ is hol. convex for X a smooth projective variety.

Recall:

Definition
A complex space M is hol. convex if ∀ sequence of q1, . . . , qn without a
limit point, ∃ a hol. function unbounded on it.
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Example

Y2 Yt

Y1•
•
•
•

Y S

Let Im(H1(Y1,Z)→ H1(S,Z)) = 0
Im(H1(Y2,Z)→ H1(S,Z)) = 0

and Im(H1(Y ,Z)→ H1(S,Z)) =∞

Ỹ
• ••

q1
•

q2
• •

⇒ S̃ is not holomorphically convex.
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But strictness of MHS implies

Im(H1(Y1,Z)→ H1(S,Z)) = 0
Im(H1(Y2,Z)→ H1(S,Z)) = 0

⇓
and Im(H1(Y ,Z)→ H1(S,Z)) = 0
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H1(S)→ πMalcer
1 (S)

Theorem (K)
Let S be a smooth projective variety and π1(S) nilpotent.
Then S̃ is holomorphically convex.

H1(S,Z)→ πMalcer
1 (S)

Theorem (EKPR)
Let X be a smooth projective variety and π1(X ) ⊂ GL(n,C).
Then X̃ is holomorphically convex.

Remark
This technique could lead to π1(X ) residually finite.
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Uniformization Burnside problem

C ′

Γn - vanishing cycle S ′

C

SY

Γ - vanishing cycle
n : 1

n : 1 Base change

1→ π1(Y )/<Γ> → π1(S ′)→ π1(C)→ 1
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Theorem (Zelmanov)
π1(S ′) is not residually finite.

g1

g1

g
g1 < g

If Γg1(m) is finite but Γg (m) is infinite.
⇒ S̃ is not holomorphically convex.
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Question (Zelmanov)

related

Question (Shafarevich)
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Uniformization and Central Manifolds

“Hodge” theory of central manifolds
→ Vector or Higgs bundles

V2

V1

V3
V4

F

Example
Solutions of

∂H
∂t = ΛF + x

⇓ center manifold

ODE
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In fact:

Theorem (Haiden, Katzarkov, Kontsevich,Pandit)
This ODE is connected with a quiver:

•

V1

•

V4

•

V2

•

V3

ϕihi

Ji h−1
i

dhi
dt =

∑
α:i→j

h−1
i ϕ+

αhjϕα−

−
∑

α:i→j
ϕαh−1

j ϕ+
αhi
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Theorem (HKKP)
The asymptotics of ODE define a filtration on the central manifold Z.

The dimension of Z is from d = 1 + · · ·+ 1 to k2
1 + · · ·+ k2

d .
The asymptotics are

Rt + R log(t) + · · ·+ R log(log(· · · (t))).

The define a filtration Ft .
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Properties
1 F satisfies Griffiths transversality.

2 F satisfies functoriality.

3 F satisfies strictness.

4 The “monodromy” action on Z is semi-simple.
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Theorem (KP)
Monge-Ampère Equation ⇒ ODE.

X

P(O + E )

C

Xt

•

•

quiver as before

h2

h1
metric
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Semistable Semistable Kähler metric on total
space T (E )

V2

V1

V3
V4

E

•
h1 •

h2

ext V2

V1

metrics with very
small vectors V1 + V2
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ext

V1

V2

stable

T (V2) KE

T (V1) KE

quiver of semistable metrics quiver of KE metrics
• • • • • •
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Recall we have a HMS.

V2

V1

V3
V4

V5

HMS

•

•

•

•

•

•

•

•

•

•

•

•

• 0

0

• 0
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π1(Yi ) −→ FukFS(Yi ) = MF

Mean curvature flow

∃ central manifold with all the properties:
1 Functoriality

2 Strictness

3 Semi-stability

Expectation
1 , 2 , 3 imply the Shafarevich conjecture.
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Central manifold and Zelmanov conjecture

We have the following:

Theorem (HKKP)

Consider Rn as C∗n/S1n and V̇ = grad f .
Let f be a convex function defined by

f =
∑

Cα·< uα,V > + < u,V >,

where uα, u ∈ Rn.
Then

V = V0t + V1 log(t) + · · ·+ Vn log(log(· · · (t))) + O(1).
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Remark
For more complicated functions, we get different solutions.

Theorem (HKKP)
In the above situation, we have a central manifold Z, with 1 6 dim Z 6 n.

Theorem (HKKP)
In the case G/K, we have the same for the gradient equation.
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Conjecture
The same holds for CAT(W ).

If this is proven, we can directly work with Burnside groups.
If B(n1,m) does not have central manifold, B(n2,m) does not have either.
No jumps in cardinality.
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We have a sequence (**):

PDE → ODE → Z - central manifold

⇓

CATEGORY

Example
• Donaldson-YM equation
• Mean curvature equation
• Monge-Ampère equation
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Definition
PDE satisfying (**) is called categorical.

Question
Find a sufficient condition so that PDE is categorical.

This gives additional structures on solutions e.g. satisfying:
Transversality
Functoriality

Semi-simplicity
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Recall: Classical SL2 nilpotent orbit theorem says that for

f : D → U,

∃ a nilpotent orbit O s.t.

•

O

f (D)

O approximates f (D).
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Consider a spherical functor S. Let Db(Q) be a quiver category and ḣ the
flow over metrized objects.

Conjecture
The superposition of ḣ and the flow of S define a new filtration.
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Example 1
Db(A1) = {V }, N-PL. This is the standard Hodge filtration.

Example 2
S-localization. We get a bifurcation diagram for ḣ.

Example 3
Families of matrix factorizations.
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Multi SL2-Nilpotent Orbit Teorem

We have the following parallel:

V2

invariant
under

monodromy

V1

V3
V4

N

monodromy

An

An

An
An

S

spherical
functors
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We have the classical SL2-Nilpotent Orbit Theorem:

f : D → U

•
N

Approximation

We also have:

•
N1 N2

N1 + N2
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We combine two flows:
1 The flow given by Nahm’s equation - NE.

2 The “Quiver equation” - QE.

Ji h−1
i

dhi
dt =

∑
α:i→j

h−1
i ϕ+

αhjϕα −
∑

α:i→j
ϕαh−1

j ϕ+
αhi

•

ϕ(NE ,QE )

NE QE

Conjecture
We get a new “refined” filtration.
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In terms of stability conditions, we get:
∫∫
Γ,h

ehe(f )dzdh
∑

k,n,m
akzkbn log(z)cm(log(log(· · · (h))))

m

Conjecture
The refined filtration depends on Ospec Db(C,An).

•

•

•
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We give a geometric example.

C C ′ •

•

•N
QE

Proposition
We have a refined filtration on Db(An, C).
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In general, we have:
1 A flow C which defines ODE (associated with a quiver).

2 Several (spherical) functors S1,S2, . . . ,Sn.

⇓

This defines:
A) A refined filtration.
B) A new “Futaki” type of invariant minimizing the refined filtration.

40 / 1



Example 1
Mean curvature + 2 spherical functors

S1 S2

FS1

S2

FS2 /Γn

localization

We get a new filtration with strictness and functoriality. The initial flow is:

ċ = −d Arg(Ω|c)cω−1
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Example 2

Calabi
Flow

M1

M2

Mk

S - test configuration

spherical functor

Flow:
ω̇ = ω − Ric(ω).

Refined Futaki invariant for refined filtration.

42 / 1



Example 3

S1

V1

Vn

S2

Vi

Wj

degenerations

Flow: Yang Mills Higgs

- Semi-stable degenerations
- Functoriality
- Strictness
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The End
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