
Statistics for high-frequency observations of a
stochastic process

Jean Jacod
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The aim

We have a stochastic process X , one-dimensional for simplicity. about which we want to

do some kind of statistical inference. We are in the following setting:

• A �nite horizon: X is indexed by time, say over the interval [0, 1].

• A single path is observed (we cannot repeat the same �experiment�)

• Discrete observations: we only observe the values Xi/n for i = 0, 1, . . . , n (we only

consider here �regular sampling�, but irregular sampling could also be considered).

• Possibly noisy observations: We mainly consider the case where Xi/n is exactly ob-

served for i = 0, 1, . . . , n, but in many practical examples one really observe Xi/n + εi,
where εi is an observation noise.

• High-frequency setting: no consistent inference whatsoever can be done in the above

setting when n is �xed. So, we consider the situation where n is �large�, meaning looking at

asymptotic inference by letting n → ∞.



Examples of high-frequency data are more and more common, in biology, telecommu-

nications, or �nance, for example. For concreteness we focus here on �nancial data: Xt

represents the price (or more often the log-price) of an asset at time t. Then

• A �nite horizon: X can be observed over a very long period of time, but it is certainly

not stationary. Its characteristics change with time, so for inference we need to restrict our

attention to (relatively) short periods in which those characteristics are �resonably� constant.

• A single path: There are many other assets, but their prices have different characteristics

thanX ; so, impossible to observe several paths of the same process X .

• Discrete observations: The price is really observed (or known) when transactions (or

perhaps changes of quotes) happen.

• Possibly noisy observations: Typically X is modeled as a continuous process, or a dis-

continuous one with non trivial continuous part. However, prices are recorded as a multiple of

a basic unit, say 1 cent. So there is a rounding error, and in �nance there is also the so-called

�microstructure noise�.

• High-frequency setting: the time interval [0, 1] is perhaps one day, or one month. For

liquid stocks there are typically several transactions within each second, meaning that during

a working day we have more than 50, 000 observations.



What can be estimated ?

A very simple example (the Black-Scholes model): The log-price has the form

Xt = bt+ σWt,

where b ∈ R is the drift, σ > 0 the square-root of the volatility, andW is a standard Brownian

motion.

1) If t 7→ Xt is fully observed on [0, t]: if∆n
i X = Xi/n−X(i−1)/, then

∑n
i=1(∆

n
i X)2

P−→
σ2. Then, if X is fully observed, one knows in principle σ exactly, up to a null set (i.e., the

probability of an error is 0).

On the other hand, b cannot be determined for sure, because the laws of X (over [0, 1])
corresponding to any value of b are all equivalent (of course, in this case there is an optimal

estimator of b, which isX1, and the estimation error is N (0, σ2)).

Note also that if we observe X over [0,∞), in contrast, Xt/t converges to b as t → ∞,

so b is also known in this case. But this is due to the stationarity of (the increments) of X , a

property that we want to avoid.



2) If t 7→ Xt is discretely observed: Again no consistent estimators for b, of course.

For σ, the convergence Ĉn :=
∑n

i=1(∆
n
i X)2 to σ2 has the rate

√
n, and in fact√

n (Ĉn − σ2) converges in law to N (0, 2σ4), as n → ∞.

This is elementary, since the variables∆n
i X are i.i.d. as i varies, with lawN (b/n, σ2/n):

a standard parametric problem. The MLE for σ2 is not Ĉn but
∑n

i=1(∆
n
i X − X1/n)

2, but

its asymptotic behavior is the same as for Ĉn.



What can be estimated - 2 ?

The continuous It �o semimartingale case:

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs

(bt and σt > 0 are now processes themselves).

• As before, no way for estimating bt.

• As before, if the whole path t 7→ Xt is observed, one knows the process σt on [0, 1].
Indeed,

Ĉn
t =

[nt]∑
i=1

(∆n
i X)2

P−→ Ct =

∫ t

0

σ2
s de

(convergence in probability), whereCt is the quadratic variation ofX . So in principle (Ct)t∈[0,1]
is known, hence (σt)t∈[0,1] as well (up to null sets...)

Our aim becomes: �estimate� Ct for all t, which are the only quantities (besides Xt itself)

which can be retrieved from the observations.



This is NOT a standard problem, since Ct is random. However one can prove:

√
n
(
Cn

t − Ct

)
converges stably in law to

√
2

∫ t

0

σ2
s dBt,

where B is another Brownian motion, independent of X . Equivalently, the limit is N
√
Qt,

where Qt = 2
∫ t

0
σ4
s ds is called �quarticity� and N is N (0, 1) independent of Qt: the limit

is �mixed normal� and the stable convergence (stronger than mere convergence in law) was

introduced by Renyi (1963) in an analogous statistical context.

Moreover, one can also prove that

Q̂n
t =

2n

3

[nt]∑
i=1

(∆n
i X)4

P−→ Qt

Then, due to the stable convergence,

√
n√
Q̂n

t

(
Cn

t − Ct

) L−→ N (0, 1)

Hence, although Ct is random, one can �estimate� it and construct con�dence bounds for it.



Estimating the spot volatility σ2
t . Since Ct =

∫ t

0
σ2
s ds and Ct can be estimated for all t,

the quantities σ2
t can also be consistently estimated (up to a dt-null set, since anyway one

can change σt on a dt-null set without changing the process X itself).

In practice, we need some smoothness of t 7→ σ2
t . We have

Ct+s − Ct

s
= σ2

t +
1

s

∫ t+s

t

(σ2
u − σ2

t ) du

and 1
s
(Ĉn

t+s − Ĉn
t ) =

1
s
(Ct+s −Ct)+ OP

(
1/
√
ns

)
. Hence if t 7→ σ2

t is ρ-Hölder we get

nθ(Ĉn
t+n−θ − Ĉn

t ) = σ2
t + O(n−θρ) + OP (n

(θ−1)/2)

and taking θ = 1/(1 + 2ρ) gives us

n1+2ρ(Ĉn
t+1/n1+2ρ − Ĉn

t ) = σ2
t +

1

nρ(1+2ρ)
OP (1)

In many (most ?) models we know that ρ = 1/2, so the rate is n1/4, and the OP (1) term

above is actually a mixed centered normal variable with an explicit (random) variance.



What can be estimated - 3 ?

The general It �o semimartingale case:

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs + sum of jumps

The jumps are driven by a Poisson random measure and characterized (in an appropriate

sense) by the family of Lévy measures (Ft)t∈[0,1]: each Ft = Ft,ω(dx) is a positive measure

on R\{0} such that
∫
(1

∧
x2)Ft(dx) < ∞, and for any A ⊂ R at a positive distance of 0

the process
∑

s≤t 1A(∆Xs)−
∫ t

0
Fs(A) ds is a martingale (here∆Xt = Xt −Xt−).

More concretely, an interpretation of Ft is as follows:

• If X has �nitely many jumps only: if we know that the stopping time T is a jump time of X ,

then all Ft are �nite measures and

FT (A)

FT (R)
= P(∆XT | FT−) (FT− is the past strictly before T )

• In general, if T is a jump time of X with size in Dε = {x : |x| > ε}
FT (A ∩Dε)

FT (Dε)
= P(∆XT | FT−)



The degree of jump activity. The function α 7→
∫
R(|x|

α
∧
1)Ft(dx) is non-increasing,

and

βt = inf
(
p ≥ 0 :

∫
R
(|x|p

∧
1)Ft(dx) < ∞

)
is called the (a priori random) local Blumenthal-Getoor index. Necessarily βt ∈ [0, 2], and the

essential supremum βt of s 7→ βs over [0, t] is the (random) global index. We have

p > βt ⇒
∑

S≤t |∆Xs|p < ∞
P < βt ⇒

∑
s≤t |∆Xs|p = ∞.

When X is a Lévy process βt(ω) = βt(ω) = β. It also the stability index when X is a

stable process.



If the whole path t 7→ Xt is known:

- All jumps∆Xt are known, hence A(p)t =
∑

s≤t |∆Xs|p and βt as well.

- The quadratic variation (now equal to Ct + A(2)t is known, hence Ct as well.

So, in a high-frequency setting we can hope for consistently estimatingCt and βt, and also

σ2
t and βt (if those are smooth enough in t), and also a+t (the �intensity of positive jupms�) if

Ft(x,∞)) ∼ a+t /x
β as x ↓ 0, and the same for negative jumps.

But no consistent inference possible for:

- the drift bt

- the restriction of the Lévy measures Ft to the complementDε of any neighborhood of 0 (that

is, for the law of the �big� jumps).

- anything about Ft when Ft is a �nite measure for all t.



Test for jumps

This is based on the following (easy) properties, for p > 2:

V (p)n1 :=

[nt]∑
i=1

|∆n
i X|p P−→ A(p)1, np/2−1V (p)n1

P−→ mp

∫ 1

0

σp
s ds on Ωcont,

where Ωcont is the set of all ω for which t 7→ Xt(ω) is continuous. When p = 2 we have

V (2)n1 = Ĉn
1

P−→ C1 + A(2)1.

These convergences enjoy a (not so easy) Central Limit Theorem (CLT) with rate
√
n, so

we can de�ne critical (rejection) regions of the form{
V (p)n1
V (p)2n1

> 1 + γn

}
for testing the null hypothesis (ΩCont)c{

V (p)n1
V (p)2n1

< 2p/2−1 − γ′
n

}
for testing the null hypothesis ΩCont

Choosing appropriately γn or γ′
n, we obtain tests with an asymptotic level α (any prescribed

value) and which are asymptotically consistent under the alternative.



Estimating the integrated volatility when jumps occur

When jumps are present, the approximated quadratic variation Ĉn
t =

∑[nt]
i=1(∆

n
i X)2

converge to Ct + A(2)t and not to Ct. For estimating Ct there are (mainly) two methods:

truncation: Ĉ ′n
t =

[nt]∑
i=1

(∆n
i X)2 1{|∆n

i X|≤un}

multipowers: Ĉ ′′n
t = αp

[nt−k+1∑
i=1

k−1∏
j=0

|∆n
i+jX|2/k

Both are consistent, and enjoy a CLT with a centered mixed normal limit (and the ef�cient

variance in the truncation case, a bigger variance for multipowers) provided
∫
(|x|β∧1)Ft(dx)

is a locally bounded process (this is � slightly � stronger than asking β1 ≤ β) for some β < 1.
We can likewise estimate the spot volatility σ2

t .

Note also that there are tests for the hypotheses

- �The Brownian component is present� (C1 > 0), or �is absent� (i.e., C1 = 0).

- �The jumps have �nite activity� (β1 = 0), or �in�nite activity�.



A new approach for estimating integrated volatility and BG index

(with V. Todorov)

Set ℓn = the integer part of log log n and

L(u)n =
n−ℓn∑
i=1

ℓn∑
p=1

1

p

p−1∏
j=0

(
1− cos(u∆n

i+jX)
)
.

If Xt = σWt + Yt, with Y a symmetric purely discontinuous Lévy process with a Lévy

measure satisfying
∫
(|x| ∧ 1)F (dx) < ∞. The variables∆n

i X are i.i.d. and

E
(
cos(u∆n

i X)
)
= e−σ2u2/2n−ϕ(u)/n, with 0 ≤ ϕ(u) ≤ Ku.

If un =
√
n/ log n, the expectation of the ith summand in L(un)n is thus

ℓn∑
p=1

1

p

(
1− e−σ2u2

n/2n−ϕ(un)/n
)p

=
σ2u2

n

2n
+ O

(un

n
+
(u2

n

2n

)ℓn)
and one can control the variance in a similar way. Then there is no wonder that we get a CLT

of the type:
√
n

u2
n

(
L(un)n − σ2u2

n

2

)
converges in law to N (0, σ4/2).



With a bit more care, the same result holds whenXt = bt+ σWt + Yt with Y a possibly

asymmetric purely discontinuous L´vy process. Now, an It �o semimartingale behaves locally

as a Lévy process, with characteristics changing with time. Then (after some calculations), for

any It �o semimartingale with the processes bt and σt and
∫
(|x| ∧ 1)Ft(x) locally bounded,

we have

√
n

u2
n

(
L(un)n −

u2
n

2
C1

)
stably converges in law to

1√
2

∫ 1

0

σ2
s dBs

ith B another Brownian motion independent of X . Then a trivial calculation shows us that

√
n
(2L(un)n

u2
n

− C1

)
stably converges in law to

√
2

∫ 1

0

σ2
s dBs

(so 2L(un)n/u
2
n is exactly as good as the truncated estimators introduce before, and both

rely on a tuning parameter un.



In the symmetric Lévy case Xt = σWt + Yt with a Lévy measure satisfying
∫
(|x|β ∧

1)F (dx) < ∞, in the expansion of L(un)n we have a term of size uβ
n/n, which is negligible

when β ≤ 1, but not when β > 1. In the asymmetric case we have another term of typical

order uβ∨1
n /n and of course the same is true for It �o semimartingales.

To deal with the asymmetry, we will consider the differences of two successive incre-

ments,For the other bias, we need to make a STRONG assumption on the Lévy measures

Ft. Namely, the �symmetric tail� F t = Ft([−x, x]c) satis�es∣∣∣F t,ω(x)−
at(ω)

xβ

∣∣∣ ≤ K

xβ/2
for x ∈ (0, 1]

(plus some mild but technical requirement) for a constant β ∈ (0, 2) and some nonnegative

process at, smooth enough in t. This in particular implies β1 = β is non-random on the set

{ω : A(ω) =
∫ 1

0
at(ω)dt > 0} and βt ≤ β/2 elsewhere.

This accommodate the case

Xt =

∫ t

0

bs ds+

∫ t

0

σs, dWs +

∫ t

0

γs− dZs,

with Z a stable or tempered stable process with index β.



Set

L(u)n =

n/2−ℓn∑
i=1

ℓn∑
p=1

1

p

p−1∏
j=0

(
1− cos(u∆n

2i+2j−1X − u∆n
2i+2jX)

)
.

This eliminate the bias due to asymmetry, and the key point about our assumption on Ft is

that, in the Lévy case, we have

E
(
cos(u∆n

i X − u∆n
i+1X)

)
= exp

(
− σ2u2

n
− 2aχβu

β

n
+ O(uβ/2/n)

)
.

So, L(un)n is an �estimator� for
u2
n

n
G(un)n where G(un)n = C1 + 2χβu

β−2
n A, Then,

to eliminate uβ−2
n A we use another statistic, where y > 1:

L′(u, y)n = L(uy)n − y2L(y)n,

L(u)n =

n/4−ℓn∑
i=1

ℓn∑
p=1

1

p

p−1∏
j=0

(
1− cos(u∆n

4i+2j−3X − u∆n
4i+2j−2X)

)
.



We actually have a CLT for L(un)n, and another one for L′(un, y) jointly for all y in a

�nite set of numbers y > 1, under appropriate conditions (depending on β ∈ (0, 2)) on un,

and if we put

Ĉn =
1

u2
n

(
L(un)n −

L′(un, y)
2
n

L′(un, y2)− 2y2L′(un, y)

)
,

we have
√
n
(
Ĉn − C1

)
converges stably in law to 2

∫ 1

0

σ2
s dBs

So we loose a factor 2 for the asymptotic variance, but this works for All β.(
Warning: This HEAVILY depends on the special structure of the Lévy measures Ft; when

this assumption fails the result also totally fails...
)



Estimating the degree of activity of jumps

It is also possible to estimate the degree of activity of jumps (= BG index), but only under the

previous restrictive assumption on Ft. Various estimators do the job, but we use the previous

method, which leads to �almost� optimal results. We extend the de�nition of L(u)n by putting;

for any integer k ≥ 1:

L(u)kn =
k∑

l=1

C l
k(−1)l+1 L(u

√
ln).

Since
∑k

l=1C
l
k(−1)l+1 l = 0 when k ≥ 2, we see that L(un)

k
n is an �estimator� for

2χβ
uβ−2
n

n

∑k
l=1C

l
k(−1)l+1 lβ/2, and we do have a CLT for this (again under appropriate

conditions on un. Then, for k ≥ 2 and y > 1,

β̂k
n =

1

log y
log

(L(uny))
k
n

L(un)kn

)
and we have

uβ/2
n

(
β̂k
n − β

)
converges stably in law to some centered mixed normal variable

and the variance of the limit can also be estimated (⇒ we can construct con�dence intervals).



We need to �nd un �as large as possible� to have a good rate. By taking k large enough,

for any ε > 0 we can choose un in such a way that

nβ/4−ε(β̂k
n − β) converges to a centered mixed normal

This has to be compared to the ef�cient rate which, in the case of a Lévy process with a

non-zero Gaussian component is nβ/4 (up to log term).

In a similar way, we can estimate

• The (random) intensity of jumps, that is the variable A.

• The analogue of A for the positive (or negative) jumps only

Finally, when there is no Brownian motion in the picture, the rate improves a lot, and we

get for any ε (with a proper choice of k and un):

n1/2−ε(β̂k
n − β) converges to a centered mixed normal



When there is noise

.

Now, we suppose that the observations are not Xi/n, but rather Y
n
i = XT (n,i) + εni ,

where εni is �by de�nition� the noise. The observed returns are ∆n
i Y = Y n

i − Y n
i−1. The

assumptions onX are as previous. For the noise, we suppose that the variables (εni : i ≥ 1)
are independent, conditionally on the whole process X , with for all integer p > 0:

E((εni )p | Hn
∞) = E((εni )p | Hn

T (n,i)) = γ
(p)
T (n,i)

• γ
(0)
t ≡ 0 (the noise isX-conditionally centered)

• γ(p) for p ̸= 1 are smooth enough in t.

An important example: We have i.i.d. variable Zn
i , independent ofX , uniform over [0, 1], and

the observation at time i/n is

Y n
i = [Xi/n + Zn

i ] (the integer part),

Remark: If we have �pure rounding�, i.e. if we observe [XT (n,i) + 1/2], then no consistent

estimator for Ct exists.



De-noising by pre-averaging

We choose a tuning parameter hn (an integer) going to ∞ as n → ∞. The de-noising

method is pre-averaging, but other methods could probably be used as well. Take a weight

(or, kernel) function g on R with

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,

s /∈ (0, 1) ⇒ g(s) = 0,
∫ 1

0
g(s)2ds > 0,

for example g(x) = x+
∧
(1− x)+. With a sequence hn → ∞ of integers, set

gni = g(i/hn), gni = gni+1 − gni
ϕn = 1

hn

∑
i∈Z(g

n
i )

2, ϕn = hn

∑
i∈Z(g

n
i )

2, ϕ̃
(β)
n = 1

hn

∑
i∈Z |gni |β,

ϕ =
∫
g(u)2 du, ϕ =

∫
g′(u)2 du, ϕ̃(β) =

∫
|g(u)|β du

The pre-averaged returns of the observed values Y n
i are

Ỹ n
i =

hn−1∑
j=1

gnj (Y
n
i+j − Y n

i+j−1) = −
hn−1∑
j=0

gnj Y
n
i+j.



Then, we can basically re-de�ne the previous statistics L(un)n, etc... with ∆
n
i X substi-

tuted with Ỹ n
i (with some care: we only take the Ỹ n

i for i that are multiples of hn.

The effect of pre-averaging is to kill the noise: as soon as kn/
√
n → ∞, Ỹ n

i is basically

the same as X̃n
i (the pre-averaged value when there is no noise). Then some (tedious) work

allows us to see that all previous CLTs are valid, hence the estimators for Ct or β behave

as previousle, with one BIG difference: n should be substituted with n/hn. So the rates we

obtain are basically the square-roots of the rates in the no-noise case.

This is of course natural: when there is an additive i.i.d. noise, the optimal rate for estimat-

ing Ct for example is no longer
√
n, but n1/4.



Extensions

• All what precedes can be done when the sampling is irregular, but relatively close to a kind

of �modulated� random walk: that is, the sampling times T (n, i) are no longer i/n, but for
each n are a modulated random walk (the variables T (n, i+ 1)− T (n, i) are, conditionally
onX , independent with a law depending �smoothly enough� on X .

•We can consider the case where the Lévy measures have a �nite expansion

F t(x) =
M∑

m=1

amt
xβm

+ O

( 1

xβ1/2

)
with β1 > β2 > · · · > βM > β1/2. It is then possible to estimate the successive indices

βm (with of course decreasing rates as m increases).



Open problems

• Some theoretical problems, such as optimality (ef�cient rates, ef�cient asymptotic variances)

for the estimations of the various parameters in an It �o semimartingale setting.

•What happens when the BG index βt is time-varying ?

• What about multi-dimensional processes X (for example, how to de-bias the estimator for

the cross integrated volatility, or quadratic co-variation, of the continuous part of two compo-

nents ofX ?).

• How to choose in practice un, and hn in the noisy case (so far, only �mathematical� results

are known.)


