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Introduction. The classical orthogonal polynomials are the most
widely used orthogonal polynomials.
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Introduction. The classical orthogonal polynomials are the most
widely used orthogonal polynomials.
They have a number of properties that distinguish them among the
rest of the orthogonal polynomials:

• They are eigenfunctions of an ordinary differential operator

• They have ladder operators, (operators raising or lowering the
index)

• They can be presented in terms of hypergeometric functions.

• They can be presented via Rodrigues formulas.

• There are Pearson’s equations for the weights of their measures.

• They possess generating functions.
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Bochner has proven that the only orthogonal polynomials with the
property to be eigenfunctions of a second order differential
operator are the classical orthogonal polynomials.
Hence all the above properties are consequences of the first one.
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Bochner has proven that the only orthogonal polynomials with the
property to be eigenfunctions of a second order differential
operator are the classical orthogonal polynomials.
Hence all the above properties are consequences of the first one.
They are indispensable tool both in mathematics and physics. E.g.
the quantum harmonic oscillator is completely solved in terms of
the Hermite polynomials Hn(x), which are eigenfunctions of the
operator:

L = −∂2
x + x∂x
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Similar properties have the Laguerre and Jacobi orthogonal
polynomials, They also have many important applications to
mathematics and physics.



Introduction Subalgebras of the Weyl Algebra Subalgebras of the Weyl Algebra Automorphisms New anti-isomorphism Applications to VOP Hypergeometric representation. Vector measures and Pearson equations

Similar properties have the Laguerre and Jacobi orthogonal
polynomials, They also have many important applications to
mathematics and physics.

Important remark. The orthogonality condition, due to the
classical Favard-Shohat theorem is equivalent to the well known
3-term recurrence relation

xPn = Pn+1 + β(n)Pn + γ(n)Pn−1,

where β(n), γ(n) are constants, depending on n. Here the
polynomials Pn(x), n = 0, . . . , are normalized by the condition
that their highest order coefficient is 1.
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Similar properties have the Laguerre and Jacobi orthogonal
polynomials, They also have many important applications to
mathematics and physics.

Important remark. The orthogonality condition, due to the
classical Favard-Shohat theorem is equivalent to the well known
3-term recurrence relation

xPn = Pn+1 + β(n)Pn + γ(n)Pn−1,

where β(n), γ(n) are constants, depending on n. Here the
polynomials Pn(x), n = 0, . . . , are normalized by the condition
that their highest order coefficient is 1.
We see that the COP are eigenfunctions of 2 operators - the
differential operator in x and the difference operator in n.
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In recent years more general notions of orthogonality in the space
of polynomials were introduced and studied. One of these notions
is the notion of multiple orthogonal polynomials (MOP). They
have been extensively studied in a number of works by Aptekarev,
Nikishin, Sorokin, Van Assche, Kuijlaars, etc.
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In recent years more general notions of orthogonality in the space
of polynomials were introduced and studied. One of these notions
is the notion of multiple orthogonal polynomials (MOP). They
have been extensively studied in a number of works by Aptekarev,
Nikishin, Sorokin, Van Assche, Kuijlaars, etc.
Applications of MOP.

• Numerical methods. They appear in simultaneous rational
approximation of several analytic functions (Hermite-Padé
approximation).

• Random matrices.

• Number theory. In fact this is the first application due to
Hermite, who used them in his proof of transcendency of ”e”.

• Spectral theory of nonsymmetric operators
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Here I will use a special case of these polynomial systems, called
Vector Orthogonal Polynomials (VOP) or d-orthogonal
polynomials. As in the case of orthogonal polynomials this
property has purely algebraic expression, which will be used here.
Due to P. Maroni, we can use as a definition of vector
orthogonality the following one: the polynomials satisfy a
d + 2-term recursion relation

xPn(x) = Pn+1 +
d∑

j=0

γj(n)Pn−j(x)

with constants γj(n), independent of x , γd 6= 0. d = 1 gives
Shohat-Favard theorem.
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Generalized Bochner problem (GBP). Find systems of
polynomials Pn(x), n = 0, 1, . . . that are eigenfunctions of a
differential operator L of order m with eigenvalues λ(n) depending
on the discrete variable n (the index):

LPn(x) = λ(n)Pn(x)

and which at the same time are eigenfunctions of a difference
operator, i.e. that satisfy a finite-term (of fixed length d + 2),
recursion relation of the form

x · Pn(x) = Pn+1(x) +
d∑

j=0

γj(n)Pn−j(x).
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Generalized Bochner problem (GBP). Find systems of
polynomials Pn(x), n = 0, 1, . . . that are eigenfunctions of a
differential operator L of order m with eigenvalues λ(n) depending
on the discrete variable n (the index):

LPn(x) = λ(n)Pn(x)

and which at the same time are eigenfunctions of a difference
operator, i.e. that satisfy a finite-term (of fixed length d + 2),
recursion relation of the form

x · Pn(x) = Pn+1(x) +
d∑

j=0

γj(n)Pn−j(x).

For each d and m classify all systems of d-orthogonal polynomials.
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In the case of classical orthogonal polynomials Bochner’s theorem
shows that all their properties are connected with the differential
operator, whose eigenfunctions they are. With the above
generalization I hope to find some MOP analogs for the classical
orthogonal polynomials. The new MOP’s should possess some of
their properties.
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In the case of classical orthogonal polynomials Bochner’s theorem
shows that all their properties are connected with the differential
operator, whose eigenfunctions they are. With the above
generalization I hope to find some MOP analogs for the classical
orthogonal polynomials. The new MOP’s should possess some of
their properties.

Remark. Work to find MOP analogs of COP has been successfully
done in a different direction. The resulting polynomial systems
really have a number of properties that resemble the COP. In
particular I have to mention the work by Van Assche with different
co-authors - Coussement, Aptekarev, Branquinho. They use of the
classical weights and their combinations to construct the weights
for the these MOP. However the intersection between my work and
these polynomial systems are only the COP.
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GBP falls into the framework of the so called the bispectral
problem. It was isolated by J. J. Duistermaat and F. A. Grünbaum
under this name in the influential paper ”Differential equations in
the spectral parameter”, CMP, 1986. The terminology reflects the
fact that there is a function ψ(x , z) in two variables, which is an
eigenfunction for two operators.
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GBP falls into the framework of the so called the bispectral
problem. It was isolated by J. J. Duistermaat and F. A. Grünbaum
under this name in the influential paper ”Differential equations in
the spectral parameter”, CMP, 1986. The terminology reflects the
fact that there is a function ψ(x , z) in two variables, which is an
eigenfunction for two operators.

Example

Consider the Meijer’s g-functions

G d ,0
0,d

( −
α1,...,αd

∣∣ x).
Put ψ(x , z) = G d ,0

0,d

( −
α1/d ,...,αd/d

∣∣ (−xz/d)d
)
. Then ψ(x , z) is an

eigenfunction of two differential operators

x−d(x∂x − α1) . . . (x∂x − αd)ψ(x , z) = zdψ(x , z)

z−d(z∂z − α1) . . . (z∂z − αd)ψ(x , z) = xdψ(x , z).
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This simple example allowed us (Bakalov, Yakimov, H., 1997,
CMP) to extend the results of the Duistermaat-Grünbaum paper,
which deals with the case d = 2.
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This simple example allowed us (Bakalov, Yakimov, H., 1997,
CMP) to extend the results of the Duistermaat-Grünbaum paper,
which deals with the case d = 2.
The bispectral problem originated from studies in image processing
and in particular from computer tomography.
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This simple example allowed us (Bakalov, Yakimov, H., 1997,
CMP) to extend the results of the Duistermaat-Grünbaum paper,
which deals with the case d = 2.
The bispectral problem originated from studies in image processing
and in particular from computer tomography.

The tools that I use here also originate from studies of the
bispectral problem. In 1996-1998 my students B. Bakalov and M.
Yakimov and myself published a series of papers on the problem.
One of them contains a method based on automorphisms of
algebras for construction of bispectral operators.

The purpose of the present study is to construct vast families of
VOP, and to show that they have many of the properties of the
classical orthogonal polynomials. Also connections with other
bispectral problems.
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Subalgebras of the Weyl Algebra. The differential operators
with polynomial coefficients form the Weyl algebra W1 which is of
major importance for quantum physics. Instead of differential
operators in x we can use difference ones and formulate the same
problem.
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Subalgebras of the Weyl Algebra. The differential operators
with polynomial coefficients form the Weyl algebra W1 which is of
major importance for quantum physics. Instead of differential
operators in x we can use difference ones and formulate the same
problem.
The construction below can be done in an abstract form (not an
objective in itself!) and has been done. However I prefer for this
talk to use the standard realization.

The Weyl algebra W1 is spanned by the two generators x , ∂x .
Denote by H the element x∂x and let R(H) be a polynomial of
degree d in H. Consider also the element G defined as

G = R(H)∂x ∈W1.

We are going to define a subalgebra B1 of W1, spanned by the
generators x ,H,G .



Introduction Subalgebras of the Weyl Algebra Subalgebras of the Weyl Algebra Automorphisms New anti-isomorphism Applications to VOP Hypergeometric representation. Vector measures and Pearson equations

Automorphisms
Define an automorphism σ of B1, acting on elements A ∈ B1 as

σ(A) = eadG (A) =
∞∑
j=0

adjG A

j!
here adG (A) = GA− AG .



Introduction Subalgebras of the Weyl Algebra Subalgebras of the Weyl Algebra Automorphisms New anti-isomorphism Applications to VOP Hypergeometric representation. Vector measures and Pearson equations

Automorphisms
Define an automorphism σ of B1, acting on elements A ∈ B1 as

σ(A) = eadG (A) =
∞∑
j=0

adjG A

j!
here adG (A) = GA− AG .

Lemma

The automorphism σ acts locally nilpotently on BR1 , i.e. the series
defining σ(A) is finite for any A. The images of the generators of
B1 are: 

σ(G ) = G

σ(H) = H + G

σ(x) = x +
d∑

j=0
γj(H)G j .

(1)

with some polynomials γj(H).
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We can define more general automorphisms by making use of any
polynomial q(G ) in G and put

σq = eadq(G) .
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We can define more general automorphisms by making use of any
polynomial q(G ) in G and put

σq = eadq(G) .

Everything essentially repeats the case of q(G ) = G .

Comment. The above relations and in particular the expressions
for σx and σH in fact prepare the corresponding d + 2-term
recurrence relation and the differential operator. The important
point is that we construct both of them simultaneously and
together with the VOP.
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We need a second algebra B2, which we define as follows. First

define the algebra R spanned by the operators T ,T−1, n̂ acting on
functions f (n) as follows

T±f (n) = f (n ± 1), n̂f (n) = nf (n).

Let us define the map b : W1 → R by

b(x) = T , b(∂x) = n̂T−1.
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We need a second algebra B2, which we define as follows. First

define the algebra R spanned by the operators T ,T−1, n̂ acting on
functions f (n) as follows

T±f (n) = f (n ± 1), n̂f (n) = nf (n).

Let us define the map b : W1 → R by

b(x) = T , b(∂x) = n̂T−1.

Corollary

The restriction of b is an anti-isomorphism b : B1 → b(B1) and

b(H) = n̂, b(G ) = n̂T−1R(n̂).

Definition

B2 = b(B1)



Introduction Subalgebras of the Weyl Algebra Subalgebras of the Weyl Algebra Automorphisms New anti-isomorphism Applications to VOP Hypergeometric representation. Vector measures and Pearson equations

Let us take the simplest polynomial system {xn, n = 0, 1, . . .}.
We see that the above anti-isomorphism b can be realized using
the obvious representations of the algebras B1,B2 in C:

x · xn = xn+1

Hxn = nxn

Gxn = nR(n − 1)xn−1.
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New anti-isomorphism Using the automorphism σ we can define
a new anti-isomorphism b′ by the formula b′ = b ◦ σ−1. In what
follows we will compute explicitly b′. The more general
b′q := b ◦ σ−1

q can also be computed explicitly. Below having in
mind applications to VOP we will use the generator L = σ(H)
instead of H.

Also starting with the polynomial system ψ(x , n) = xn with the
help of operator G we define the vector orthogonal polynomials:
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New anti-isomorphism Using the automorphism σ we can define
a new anti-isomorphism b′ by the formula b′ = b ◦ σ−1. In what
follows we will compute explicitly b′. The more general
b′q := b ◦ σ−1

q can also be computed explicitly. Below having in
mind applications to VOP we will use the generator L = σ(H)
instead of H.

Also starting with the polynomial system ψ(x , n) = xn with the
help of operator G we define the vector orthogonal polynomials:

Pn(x) = eGψ(x , n) =
∞∑
j=0

G jψ(x , n)

j!
.

Notice that the operator G reduces the degree of any polynomial
by 1. Hence the above series is finite and defines a polynomial of
degree n.
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Let us introduce the operator L = σ(H). In the present situation it
reads

L = x∂ + R(x∂)∂.

Finally we define the differential operator M = σ(x).
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Let us introduce the operator L = σ(H). In the present situation it
reads

L = x∂ + R(x∂)∂.

Finally we define the differential operator M = σ(x).

Theorem

The polynomials Pn(x) have the following properties:
(i) They are eigenfunctions of the differential operator L with
eigenvalues λ(n) = n.
(ii) They satisfy the recurrence relation of the form

xPn(x) = Pn+1(x) +
d∑

j=0

γj(n)Pn−j(x).

(iii) They have ladder (creation and annihilation) operators -
MPn = Pn+1 and GPn = nR(n − 1)Pn−1.
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The automorphisms σq also produce VOP. In particular the cases
of q(G ) = ρGm give a direct generalization of the well known
Gould-Hopper polynomials, which correspond to G = ∂x . For this
reason we propose to call the polynomials corresponding to
q(G ) = ρGm with any G Generalized Gould-Hopper
Polynomials (GGHP).
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The automorphisms σq also produce VOP. In particular the cases
of q(G ) = ρGm give a direct generalization of the well known
Gould-Hopper polynomials, which correspond to G = ∂x . For this
reason we propose to call the polynomials corresponding to
q(G ) = ρGm with any G Generalized Gould-Hopper
Polynomials (GGHP).

The GGHP have many features similar to the Hermite polynomials.
This will be seen by examples.
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Example

(i) G = −(x∂x + α + 1)∂x corresponds to Laguerre polynomials.

(ii) q(G ) = ρ∂mx /m corresponds to Gould-Hopper polynomials.
When m = 2 and ρ = −1 these are the Hermite polynomials.

(iii) Let again G = (x∂x + α + 1)∂x and q(G ) = G 2. This is the
simplest new example.
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Example

(i) G = −(x∂x + α + 1)∂x corresponds to Laguerre polynomials.

(ii) q(G ) = ρ∂mx /m corresponds to Gould-Hopper polynomials.
When m = 2 and ρ = −1 these are the Hermite polynomials.

(iii) Let again G = (x∂x + α + 1)∂x and q(G ) = G 2. This is the
simplest new example.

Remark. Earlier Ben Cheikh and Douak defined the VOP,
corresponding to q(G ) = G by hypergeometric formulas.
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Hypergeometric representation.

pFq

[
α1 . . . αp

β1 . . . βq
; x

]
=
∞∑
j=0

(α1)j . . . (αp)j
(β1)j . . . βq)j

x j

j!

Here (a)j = a(a + 1) . . . (a + j − 1), (a)0 = 1 is the Pochhammer
symbol.
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Hypergeometric representation.

pFq

[
α1 . . . αp

β1 . . . βq
; x

]
=
∞∑
j=0

(α1)j . . . (αp)j
(β1)j . . . βq)j

x j

j!

Here (a)j = a(a + 1) . . . (a + j − 1), (a)0 = 1 is the Pochhammer
symbol.

Example

Let G = R(H)∂, where R(H) =
∏d

k=1(H + αk + 1). Then

Pn(x) =
d∏

k=1

(αk + 1)n · 1Fd

[
−n

α1 . . . αd
;−x

]
.
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Example

Generalized Gould-Hopper polynomials have hypergeometric
representation. Let G = (x∂ + α + 1)∂, q(G ) = G 2 and put
n = 2m + i .

Pn(x) =

1F3

[
−m

1
2

α+1
2

α+2
2

;−(4x)2
]
, i = 0

x · 1F3

[
−m

3
2

α+3
2

α+2
2

;−(4x)2
]
, i = 1.

Notice the resemblance of this system to Hermite polynomials.
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The entire construction works when we represent the Weyl algebra
in terms of difference operators instead of differential ones. Also all
the properties of the continuous polynomial systems have analogs
in this case. Moreover one can present an intertwining operator
between the continuous and discrete versions of the algebra B1,
which transforms the corresponding systems into one another.
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Vector measures and Pearson equations. Using the differential
equation for Pn(x) one can derive differential equations and
explicit expressions for the measures of VOP. For each polynomial
system {Pn(x)}, degPn(x) = n, n = 0, 1, . . . one can define a dual
system of linear functionals vn on C[x ],
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Vector measures and Pearson equations. Using the differential
equation for Pn(x) one can derive differential equations and
explicit expressions for the measures of VOP. For each polynomial
system {Pn(x)}, degPn(x) = n, n = 0, 1, . . . one can define a dual
system of linear functionals vn on C[x ],

〈vj ,Pn(x)〉 = δjn.
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Vector measures and Pearson equations. Using the differential
equation for Pn(x) one can derive differential equations and
explicit expressions for the measures of VOP. For each polynomial
system {Pn(x)}, degPn(x) = n, n = 0, 1, . . . one can define a dual
system of linear functionals vn on C[x ],

〈vj ,Pn(x)〉 = δjn.

We extend the operators ∂x and multiplication by f (x) to the
space of the functionals by:

〈vj , ∂xPn(x)〉 = 〈−∂xvj ,Pn(x)〉
〈vj , f (x)Pn(x)〉 = 〈f (x)vj ,Pn(x)〉 .
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Start with the equation

LPn(x) = nPn(x).

It is easy to show that the weight v0 satisfies the equation
L∗v0 = 0, where L∗ = −∂x [R(−∂xx) + x ].
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Start with the equation

LPn(x) = nPn(x).

It is easy to show that the weight v0 satisfies the equation
L∗v0 = 0, where L∗ = −∂x [R(−∂xx) + x ].
Closer inspection shows that v0 satisfies even simpler equation:

[R(−∂xx) + x ]v0 = 0.

By induction we can prove that the rest of the weights satisfy

[R(−∂xx + j) + x ]vj = 0,

These are the Pearson equations, whose solutions are up to
multiplicative constant Meijer’s g-functions

vj(x) = G d+1,0
1,d+1

( −j
0, α1,..., αd

∣∣ x)
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One can easily show that all the weights are linear combinations of
v0, . . . , vd−1 with polynomial coefficients.
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One can easily show that all the weights are linear combinations of
v0, . . . , vd−1 with polynomial coefficients.

Notice that as mentioned earlier the function

v0(x) = G d ,0
0,d

( −
α1,..., αd

∣∣ x)
participates in entirely different bispectral problem. Namely

ψ(x , z) = G d ,0
0,d

( −
α1/d ,...,αd/d

∣∣ (−xz/d)d
)

= v0((−xz/d)d)

is a joint eigenfunction for two operators.
Question: Is there a deeper connection between the two
bispectral problems or it is just a coincidence?
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The GGHP also have Pearson equations very similar to the above
ones. Their solutions are again Meijer’s g-functions.

Example

Let G = (x∂ + α + 1)∂ and q = G 2. Then the weights are given
up to multiplicative constant by

vn(x) = G 3,0
1,4

( −n
0,α+2

2
,α+3

2
, 1

2

∣∣ x2/8
)
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The above constructions can be used to present alternative
approach to some well known bi-orthogonal ensembles and
eventually to new ones. Among them are the bi-orthogonal
ensembles describing products of random matrices studied by
Kuijlaars and Zhang.
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The above constructions can be used to present alternative
approach to some well known bi-orthogonal ensembles and
eventually to new ones. Among them are the bi-orthogonal
ensembles describing products of random matrices studied by
Kuijlaars and Zhang.
Kuijlaars and Zhang considered a bi-orthogonal ensemble defined
by the probability density function

P(x1, . . . , xn) =
∏
j<k

(xk − xj)det[vk−1(xj)]j ,k=1,...,n,

where vk(x) are the above weights and study the correlation kernel

Kn(x , y) =
n−1∑
j=0

Pn(x)vn(y)

From the weights they compute the polynomials. I construct the
polynomials and then find the weights.
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Example

Consider the polynomial system Pn(x) defined by

R(H) =
d∏

s=1

(H +
α + s

d
), α > −1.

Toscano introduced the system Zn(x) = Pn(xd/dd). Later
Konhauser defined another system Yn(x), which is bi-orthogonal to
Zn(x). They are simply the weights for the Toscano polynomials
modulo a common factor xαe−x . We obtain the Konhauser
polynomials directly from the VOP with Bochner’s property.
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Example

Consider the polynomial system Pn(x) defined by

R(H) =
d∏

s=1

(H +
α + s

d
), α > −1.

Toscano introduced the system Zn(x) = Pn(xd/dd). Later
Konhauser defined another system Yn(x), which is bi-orthogonal to
Zn(x). They are simply the weights for the Toscano polynomials
modulo a common factor xαe−x . We obtain the Konhauser
polynomials directly from the VOP with Bochner’s property.

One can construct the weights for Pn(x) and then make the
change of the variables x = ud . Alternatively one can do the
computations repeating the above construction for Zn(x). Then
one gets v0(x) = xαe−x .
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Borodin’s construction of the kernel

Kn(x , y) =
n−1∑
j=0

Pn(x)vn(y)

for the case of Konhauser polynomials follows easily from or in
parallel with the Kuijlaars-Zhang constructions of the kernels.
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The above approach can also be applied to GGH polynomials. By
this I mean that I can compute explicitly the weights using the
differential operator. However I don’t claim that I have analyzed
any asymptotics. It is an open problem.
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The above approach can also be applied to GGH polynomials. By
this I mean that I can compute explicitly the weights using the
differential operator. However I don’t claim that I have analyzed
any asymptotics. It is an open problem.
Let us consider the simplest example of the original Gould-Hopper
polynomials. They have the following dual system (up to
multiplicative constant)

vj(x) =

∫
C
uje(−u)l+1/l+xudu.

They are linear combinations of v0, . . . , vl−1 with polynomial
coefficients. For l = 2 v0(x) is the Airy function. The function
ψ(x , z) = v0(x + z) is a solutions of another bispectral problem:

[∂ lx − x ]ψ(x , z) = zψ(x , z), [∂ lz − z ]ψ(x , z) = xψ(x , z).
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In this connection it was studied by Bakalov, Yakimov, H. in 1997
for all l ≥ 2. (The case l = 2 was studied by DG). We once again
come across a weight that is a solution of another bispectral
problem.
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In this connection it was studied by Bakalov, Yakimov, H. in 1997
for all l ≥ 2. (The case l = 2 was studied by DG). We once again
come across a weight that is a solution of another bispectral
problem.

Is it possible to use this fact for more detailed studies of the
VOP?
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Example

l = 2 Gould-Hopper polynomials Pn; weights v0, v1 = v ′0.

(−∂3
x + x∂x)Pn = nPn; v0 =

∫
C

exp(z3/3− xz)dz

Airy function.
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Example

l = 2 Gould-Hopper polynomials Pn; weights v0, v1 = v ′0.

(−∂3
x + x∂x)Pn = nPn; v0 =

∫
C

exp(z3/3− xz)dz

Airy function.

Example

G = (4H2 + 4H − α2 + 1)∂x ; weights v0, v1 = (xv0)′ .

(x2∂3
x + 3x∂2

x − α2 + x)∂xPn = nPn

v0 =
(

2
x

)α 1
2πi

∫
C exp(x2z/4 + z−1) dz

zα+1 .

Modified Bessel function of the first kind.
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Finally I would like to draw your attention to the following
observation. The above weights could be considered as stationary
wave functions of Gelfand-Dickey hierarchies. Similarly the VOP
are wave functions of the bi-graded Toda lattice. What is the
connection between these special solutions of the two hierarchies?
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Finally I would like to draw your attention to the following
observation. The above weights could be considered as stationary
wave functions of Gelfand-Dickey hierarchies. Similarly the VOP
are wave functions of the bi-graded Toda lattice. What is the
connection between these special solutions of the two hierarchies?

In particular the simplest case l = 2 ( Airy function) is closely
connected with the Kontsevich matrix model. Notice the integral
representation of the weight, which becomes Kontsevich’s integral
when instead of integrating over the complex number we integrate
over N × N Hermitian matrices.

ZN(X ) =

∫
HN

exp(i tr(−XZ + Z 3/3)dµ(Z )
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Finally I would like to draw your attention to the following
observation. The above weights could be considered as stationary
wave functions of Gelfand-Dickey hierarchies. Similarly the VOP
are wave functions of the bi-graded Toda lattice. What is the
connection between these special solutions of the two hierarchies?

In particular the simplest case l = 2 ( Airy function) is closely
connected with the Kontsevich matrix model. Notice the integral
representation of the weight, which becomes Kontsevich’s integral
when instead of integrating over the complex number we integrate
over N × N Hermitian matrices.

ZN(X ) =

∫
HN

exp(i tr(−XZ + Z 3/3)dµ(Z )

The famous Kontsevich theorem shows that in the case l = 2 the
coefficients of the corresponding solution of KdV have a beautiful
combinatorial and algebro-geometric interpretation. Is there such
interpretation for the corresponding VOP ?
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Other cases like the classical 1-matrix Hermitian model,
generalized Kontsevich, and Penner models also have interesting
combinatorial interpretations and are present in our scheme. Also
the corresponding solutions have a nice representation-theoretic
interpretation - they satisfy the so-called ”string equation” or
Virasoro constraints. In all cases it is crucial that there exists an
integral representation. The point is that all the combinatorics
stems from the Feynman diagram techniques that is applied to the
matrix integrals.
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Other cases like the classical 1-matrix Hermitian model,
generalized Kontsevich, and Penner models also have interesting
combinatorial interpretations and are present in our scheme. Also
the corresponding solutions have a nice representation-theoretic
interpretation - they satisfy the so-called ”string equation” or
Virasoro constraints. In all cases it is crucial that there exists an
integral representation. The point is that all the combinatorics
stems from the Feynman diagram techniques that is applied to the
matrix integrals.

Is it possible to find such interpretations in other cases?
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Other cases like the classical 1-matrix Hermitian model,
generalized Kontsevich, and Penner models also have interesting
combinatorial interpretations and are present in our scheme. Also
the corresponding solutions have a nice representation-theoretic
interpretation - they satisfy the so-called ”string equation” or
Virasoro constraints. In all cases it is crucial that there exists an
integral representation. The point is that all the combinatorics
stems from the Feynman diagram techniques that is applied to the
matrix integrals.

Is it possible to find such interpretations in other cases?

Can we transform the information to the dual system, i.e. from
VOP to the corresponding weights and vice versa?
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Thank you!
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