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Plan of the lecture

Plan of the talk

1. The Calabi program and Calabi—Yau manifolds

e E. Calabi, On Kahler manifolds with vanishing canonical class,
Princeton University Press, Mathematical Series, 1957;

e Y.-S. Yau, Calabi’s conjecture and some new results in
algebraic geometry, Proc. National Acad. Sci. U.S. A,, 1977.

2. Generalized Kahler geometry
e S. Gates, J. Hull, M. Rocek, Twisted multiplets and new
supersymmetric nonlinear c-models. Nuclear Phys. B, 1984;

e N. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math.,
2003;

e M. Gualtieri, Generalized Kahler geometry, Comm. Math.
Phys., 2014.
3. Calabi—Yau conjecture in generalized Kahler geometry
joint work with Jeff Streets (UCI): arXiv:1703.08650.
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Calabi—-Yau complex manifolds

Definition (Calabi-Yau manifold)

A compact complex m-dimensional manifold X = (M2™, J) is
Calabi—Yau if
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Calabi—-Yau complex manifolds

Definition (Calabi-Yau manifold)

A compact complex m-dimensional manifold X = (M2™, J) is
Calabi—Yau if

e X admits a Kahler metric wyg.
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Calabi—Yau complex manifolds

Definition (Calabi-Yau manifold)

A compact complex m-dimensional manifold X = (M2™, J) is
Calabi—Yau if

e X admits a Kahler metric wg. In a holomorphic chart

(92,'821'

J=1

oo = VT =T (2 ) (2)dz n

with (525 )(2) > 0,
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Calabi—Yau complex manifolds

Definition (Calabi-Yau manifold)

A compact complex m-dimensional manifold X = (M2™, J) is
Calabi—Yau if

e X admits a Kahler metric wg. In a holomorphic chart

wo_Faaf_\ﬁZ(

I,J_

82,84) 2)dzi A dz

with (aiz(;;)(z) > 0, and
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Calabi—Yau complex manifolds

Definition (Calabi-Yau manifold)

A compact complex m-dimensional manifold X = (M2™, J) is
Calabi—Yau if

e X admits a Kahler metric wg. In a holomorphic chart

wo_\ﬁaaf—\ﬁZ(

I,J_

82,84) 2)dzi A dz

with (a % )(z) > 0, and
e Kx = Ok i.e. X admits a nowhere-vanishing holomorphic
section © € HO(Kx) = H(X, Q™0(X)).
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Calabi—Yau complex manifolds

Definition (Calabi-Yau manifold)

A compact complex m-dimensional manifold X = (M2™, J) is
Calabi—Yau if

e X admits a Kahler metric wg. In a holomorphic chart

wo_faaf—WZ(

7./_

82,84) 2)dzi A dz

with (a % )(z) > 0, and
e Kx = Ok i.e. X admits a nowhere-vanishing holomorphic
section © € HO(Kx) = H(X, Q™0(X)).

© =0(z)dzz A+ N dznm

with 6(z) holomorphic and 6(z) # 0.
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Calabi—Yau complex manifolds

Examples of CY manifolds
e (tori) X™ = C™/(Z™ & /=1Z™) = T/ with

wo:T_IZdzj-/\dij, ©=dz N Ndzp,.

j=1

Analytic Results
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Calabi—Yau complex manifolds

Examples of CY manifolds
e (tori) X™=C"/(Z" & v/—1Z™) = T& with

-1
wozTZdzj-/\dij, ©=dzi N\ Ndzp,.

j=1

o XM C P™1 of degree m+ 2 is CY (X is projective with
Kx = O).
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Calabi—Yau complex manifolds

Examples of CY manifolds

e (tori) X™=C"/(Z" & v/—1Z™) = T& with
-1
wozTZdzj-/\dij, ©=dzi N\ Ndzp,.
j=1

o XM C P™1 of degree m+ 2 is CY (X is projective with
Kx = O).
e Deforming the complex structure in the above examples leads

to CY manifolds: each elliptic complex curve and each K3
complex surface is CY.
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The Kahler geometry of CY manifolds

Definition (Kahler class)
A Kahler class of Kahler metrics on X is the space of smooth

functions

Ko = { € C®(X) : w, 1= wo + V=100 > 0},

where wyq is a given (reference) Kahler metric.
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The Kahler geometry of CY manifolds

Definition (Kahler class)
A Kahler class of Kahler metrics on X is the space of smooth
functions

Ko = { € C®(X) : w, 1= wo + V=100 > 0},

where wyq is a given (reference) Kahler metric.
[wy] = [wo] = a € HIR (X, R).
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The Kahler geometry of CY manifolds

Definition (Kahler class)

A Kahler class of Kahler metrics on X is the space of smooth
functions

Ko = { € C®(X) : w, 1= wo + V=100 > 0},

where wyq is a given (reference) Kahler metric.
[wy] = [wo] = a € HIR (X, R).
Example (dim¢cX = 1)

Any riemannian metric is determined in a holomorphic chart by
wo = V—1h(z)dz A dz, h > 0.
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The Kahler geometry of CY manifolds

Definition (Kahler class)

A Kahler class of Kahler metrics on X is the space of smooth
functions

Ko = { € C®(X) : w, 1= wo + V=100 > 0},
where wyq is a given (reference) Kahler metric.
[wy] = [wo] = a € HIR (X, R).
Example (dim¢cX = 1)
Any riemannian metric is determined in a holomorphic chart by

wo = V—1h(z)dz A dz, h > 0. Any other Riemannian metric is
written as w = e¥wp, ¥ € C®(X).



Plan of the lecture  Calabi—Yau Geometry  Generalized Kdhler Geometry ~ Non-degenerate GK structures  Analytic Results

The Kahler geometry of CY manifolds

Definition (Kahler class)

A Kahler class of Kahler metrics on X is the space of smooth
functions

Ko = { € C®(X) : w, 1= wo + V=100 > 0},

where wyq is a given (reference) Kahler metric.

[wy] = [wo] = a € HIR (X, R).

Example (dim¢cX = 1)

Any riemannian metric is determined in a holomorphic chart by

wo = V—1h(z)dz A dz, h > 0. Any other Riemannian metric is
written as w = e¥wp, ¥ € C®(X).

w:wo+\/—165g0<:>AwO<p:(1—e¢)<:>/w:/wo_
X X
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The Kahler geometry of CY manifolds

Definition (Kahler class)
A Kabhler class of Kahler metrics on X is the space of smooth
functions

Kiwo) = {p € CF(X) 1wy = wo + V—100¢ > 0},
where wy is a given (reference) Kahler metric.
Example (dimcX = 1)
Any riemannian metric is determined in a holomorphic chart by

wo =V —1h(z)dz A dz, h > 0. Any other Riemannian metric is
written as w = e¥wp, ¥ € C®(X).

Klwe) = {volume normalized conformal class on X}.
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The Kahler geometry of CY manifolds

Definition (Ricci form)

Analytic Results

The Ricci form of a Kahler metric w on X is

pw = /—100 log <@ A é)

wm

where © is any local holomorphic (m,0)-form.
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The Kahler geometry of CY manifolds

Definition (Ricci form)
The Ricci form of a Kahler metric w on X is

pw = /—100 log <@ A é)

wm

where © is any local holomorphic (m,0)-form.

Example (dimcX = 1)
Any riemannian metric is determined in a holomorphic chart by
w=+/—1h(z)dz A dz,h > 0. For © = dz we get

pow = K(z)w

where K(z) = —ﬁAo log h(z) is the Gauss curvature.
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The Kahler geometry of CY manifolds

Definition (Ricci form)
The Ricci form of a Kahler metric w on X is

pw = \/—180 log (@ A é)

wm

where © is any local holomorphic (m,0)-form.

Theorem (Yau)
Let (X™,©) be a CY manifold. Then, 3 unique

wey = wo + vV —185(,0 € K[wo]

such that

Pwcy = 0
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The Kahler geometry of CY manifolds

Definition (Ricci form)
The Ricci form of a Kahler metric w on X is

pw = \/—180 log <@ A é)

wm

where © is any local holomorphic (m,0)-form.
Theorem (Yau)
Let (X™,©) be a CY manifold. Then, 3 unique
woy = wo +V—1900¢ € Kleso]
such that
Pucy = 0= (woy)"™ = A(© A O),\ = const.
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The Kahler geometry of CY manifolds

Definition (Kahler Ricci flow)

The Kahler Ricci flow starting from a Kahler metric wg on X is
any smooth family of Kahler metrics w; solving the geometric PDE

0

—wt = —2py,, (Wt)\t:o = wp.

ot
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The Kahler geometry of CY manifolds

Definition (Kahler Ricci flow)
The Kahler Ricci flow starting from a Kahler metric wg on X is
any smooth family of Kahler metrics w; solving the geometric PDE

0

Wt = —2pw,, (Wt)\tzo = Wwo-

ot

Theorem (Cao)

Let (X™,©) be a CY manifold. Then, for any Kahler metric wg
the solution to the Kahler-Ricci flow exists for all t € [0, +00),
we € K[wO] and lim;_,o w; = wey in C°.
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The Kahler geometry of CY manifolds
Summary: The Calabi Program

e The Kahler geometry is described in terms of Kahler classes
Ko where o = [wo] € H3z(X,R) N HYY(X, C) runs over the
Kahler cone.

e (uniqueness) Each Kahler class K, contains a unique
canonical representative wcy o and any other Kahler metric
w € K, is written

w = weoy .o +V—100p, p € C(X).

e (connectedness) The Kahler Ricci flow allows one to reach the
canonical representative wcy -
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Generalized Kahler geometry

(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kahler structure (GK) on a (real) 2m-dimensional
manifold M2™ is defined by the data (/, J, g, b) where:

e [ and J are two complex structures on M2™;
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Generalized Kahler geometry

(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kahler structure (GK) on a (real) 2m-dimensional
manifold M2™ is defined by the data (/, J, g, b) where:

e | and J are two complex structures on M2™;

e g is a Riemannian metric compatible with / and J, i.e.

g(J-,J-) = g(/-,/-) :g('7')'
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Generalized Kahler geometry

(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kahler structure (GK) on a (real) 2m-dimensional
manifold M2™ is defined by the data (/, J, g, b) where:

e | and J are two complex structures on M2™;

e g is a Riemannian metric compatible with / and J, i.e.

g(J-,J-) = g(/-,/-) :g('7')'

e bis a 2-form;
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Generalized Kahler geometry
(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kahler structure (GK) on a (real) 2m-dimensional
manifold M2™ is defined by the data (/, J, g, b) where:

e [ and J are two complex structures on M2™;

e g is a Riemannian metric compatible with / and J, i.e.

e bis a 2-form;

e a first order compatibility relation
8[&)/ = \/—15/(b,2’0), a_/u)J = — —15_]([)3’0),

where w; = gl,w; = gJ are the Kahler forms.
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Generalized Kahler geometry

(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Example (trivial)
X = (M?™ 1) a complex manifold and (g, w;) a Kihler metric.
Then, letting J := —/, b := 0 we obtain a GK structure (g, /, J, b).
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Generalized Kahler geometry
(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Example (trivial)
X = (M?™ 1) a complex manifold and (g, w;) a Kihler metric.
Then, letting J := —/, b := 0 we obtain a GK structure (g, /, J, b).

Problem
Are there non-trivial examples?
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Generalized Kahler geometry

(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon—Grantcharov—A. for m = 2; Hitchin for m > 2)
Let (M?™ g, 1,J,b) be GK and o := (IJ — J)g= € [(A2TM).

Then o) := 0 — /—1(lo) € H(M, A2(T;"°M)) is Holomorphic
Poisson on X = (M, 1),
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Generalized Kahler geometry

(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon—Grantcharov—A. for m = 2; Hitchin for m > 2)
Let (M?™ g, 1,J,b) be GK and o := (IJ — J)g= € [(A2TM).
Then o) := 0 — /—1(lo) € H(M, A2(T;"°M)) is Holomorphic
Poisson on X = (M, 1), i.e. in a holomorphic chart

1

= 0 0

91 =75 Zl Gij(Z)(szi A 8zj>’ (oij = —0ji)
ij=

with ojj(z) holomorphic, and

[a,,a,]_o@Z( S o 8"” (2)) =o.

(=1 " (ijk)€Ss
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Generalized Kahler geometry
(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon—Grantcharov—A. for m = 2; Hitchin for m > 2)
Let (M?™ g, 1,J,b) be GK and o := (IJ — J)g= € [(A2TM).
Then o) := 0 — /—1(lo) € H(M, A2(T;"°M)) is Holomorphic
Poisson on X = (M, 1), i.e. in a holomorphic chart

1 ¢ o 0
or=> Zﬂ 03(2) (55 A 8Zj), (05 = —03)
with ojj(z) holomorphic, and
80
rol=0e 3" (3 sua @) =0
(=1 " (ijk)eS;
Corollary (Gualtieri-A.)

If X is complex surface of general type not covered by D x D, then
A non-trivial GK structures.
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Generalized Kahler geometry
(after Gates—Hull-Rocek, Hitchin, Gualtieri)

Some basic open problems
Let X = (M?™ ]) be a compact complex manifold and o; # 0 is a
holomorphic Poisson structure.
e Is there a non-trivial GK structure (g, /, J, b) with
o= (IJ—J)g=t =Re(q))?
True if m =2 (Goto) or if (X, 0/) is a toric variety
(Boulanger).
e If (X, 0/) admits a compatible GK structure does X = (M, /)
admit a Kahler metric?
True if m = 2 (Gauduchon—-Grantcharov-A., Gualtieri-A.)
e Describe the GK geometry of (X, 0/) in a similar way as we
described the Kahler geometry of a CY manifold.
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)
The GK structure (g, /,J, b) on M?™ is called non-degenerate if
the holomorphic Poisson structure

1 o o 0
op=0—V-1(lo) = 5 Z UU(Z)E A B
ij=1 ! g

is non-degenerate, i.e. detc(ojj(z)) # 0
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)
The GK structure (g, /,J, b) on M?™ is called non-degenerate if
the holomorphic Poisson structure

1 o o 0
op=0—V-1(lo) = 5 Z UU(Z)E A B
ij=1 ! g

is non-degenerate, i.e. detc(ojj(z)) # 0 (= m = 2n)
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)
The GK structure (g, /,J, b) on M?™ is called non-degenerate if
the holomorphic Poisson structure

1 o 0
or=0—-v-1(lo) = 5 Z O','J'(Z)a A B
ij=1 ! J

is non-degenerate, i.e. detc(ojj(z)) # 0 (= m = 2n)

o o0y Tx = Tx where X = (M, ]);
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Non-degenerate GK structures

Plan of the lecture

Definition (Non-degenerate GK structure)
The GK structure (g, /,J, b) on M?™ is called non-degenerate if

the holomorphic Poisson structure

1 o 0
or=0—-v-1(lo) = 5 Z O','J'(Z)a A B
ij=1 ! J

is non-degenerate, i.e. detc(ojj(z)) # 0 (= m = 2n)

= Tx where X = (M, 1),

o o T =
o —=o:Ty=Ty;
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g, /,J, b) on M?™ is called non-degenerate if
the holomorphic Poisson structure

— - o 0
g =0 — _1(IJ):§ZUU(Z)£/\87
! J

ij=1

[y

is non-degenerate, i.e. detc(ojj(z)) # 0 (= m = 2n)

o o0y Tx = Tx where X = (M, ]);
o —=o:Ty=Ty;
o <= o0y: Ty =Ty where Y = (M, J).
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M?™ is called non-degenerate if
the holomorphic Poisson structure

1 ¢ o 0
op=0—-v-1(lo) = 5 Z O'U(Z)E A 97
ij=1 ! J

is non-degenerate, i.e. detc(ojj(z)) # 0
o —= Q) = 071 is closed and non-degenerate (2,0)-form on X,

o < Q=0"1=Re(Q) a closed and non-degenerate real

2-form on M,
o <= Q, =0 is closed and non-degenerate (2, 0)-form on Y.
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Non-degenerate GK structures: revisited

Lemma (Reduction of non-degenerate GK structures)
On M*" we have a bijection

{non — degenerate GK structures} «—— {(;,Q,)}

where €y, are closed complex-valued 2-forms satisfying
(1) Re(2)) = Re(2)) = Q is a real symplectic form;

(2) Im(y) =Qol, Im(Q2y) = Qo J for I, J integrable almost
complex structures;

(3) w = —2<1m(QJ))j’1 >0 (g

—w,ol).
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Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A holomorphic symplectic manifold is a smooth, compact,
complex m = 2n dimensional manifold X2" = (M*", ) which
admits a closed non-degenerate (2, 0)-form €.
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Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A holomorphic symplectic manifold is a smooth, compact,
complex m = 2n dimensional manifold X2" = (M*", ) which
admits a closed non-degenerate (2, 0)-form €.

In a holomorphic chart:

12n

Q= 5 Z w,-j(z)dz,- VAN de, (w,-j = —wj,-)
ij—1

with wjj(z) holomorphic functions, s.t. detc(w;j(z)) # 0 and

> %y .

iryes, 0%
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Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A holomorphic symplectic manifold is a smooth, compact,
complex m = 2n dimensional manifold X2" = (M*" ) which
admits a closed non-degenerate (2,0)-form ;.

Fact
If (X, ) is holomorphic symplectic then

1
0 ce (1 = (ko)) o

trivializes Kx, i.e. X is CY if it admits a Kahler metric.
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Non-degenerate GK structures: Examples

Suppose X = (M, 1) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi-Yau metric gcy on X is hyper-Kahler, i.e. goy is
Kahler with respect to 3 complex structures (1, J, K) satisfying the
quaternion relations, and

Q) = Awy + vV—1wk), X € C*,

where wy,wy,wyk are the Kahler forms.
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Non-degenerate GK structures: Examples

Suppose X = (M, 1) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi-Yau metric gcy on X is hyper-Kahler, i.e. goy is
Kahler with respect to 3 complex structures (1, J, K) satisfying the
quaternion relations, and

Q) = Awy + vV—1wk), X € C*,

where wy,wy,wyk are the Kahler forms.
For Q=3 (—wk +v—1wy),Qy := 3(—wkx — vV—=1w;) we have
(1) Re(Q) = Re(y) = Q (= —wk);
(2) Im(Q)) =Qo/, Im(Q2y) = Qo J for I, J integrable almost
complex structures;
1,1
(3) _2(1m(QJ))I =w; > 0.
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Non-degenerate GK structures: Examples

Suppose X = (M, 1) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi-Yau metric goy on X is hyper-Kahler, i.e. goy is
Kahler with respect to 3 complex structures (1, J, K) satisfying the
quaternion relations, and

Q= )\(w_j + v—le),)\ S (CX,

where wy,wy,wyk are the Kahler forms.

Example
If (M*", goy, 1, J, K) is a hyper-Kihler manifold, then

1
Q ::E(_WK'f‘\/jlWJ),QJ ::E(_WK_\/jlwl)

[y

defines a non-degenerate GK structure on M with g = gcv.
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Non-degenerate GK structures: Examples

Lemma (Joyce's deformation)

(M, ;,Q,) compact non-degenerate GK mfd,
Q = Re(Q)) = Re(Q,) a real symplectic form.

o f € C®(M) gives rise to a Hamiltonian vector field
Xr = Q7 Y(df) whose flow ¢f satisfy (¢f)*Q = Q.

Analytic Results
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Non-degenerate GK structures: Examples

Lemma (Joyce's deformation)
(M, ;,Q,) compact non-degenerate GK mfd,
Q = Re(Q)) = Re(Q,) a real symplectic form.
o f € C®(M) gives rise to a Hamiltonian vector field
Xr = Q7 Y(df) whose flow ¢f satisfy (¢f)*Q = Q.
o = (Q/,9y, := (¢£)*(Q,)) satisfy the conditions (1), (2), (3)
for |t]| < e.
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Non-degenerate GK structures: Examples

Lemma (Joyce's deformation)
(M, ;,Q,) compact non-degenerate GK mfd,
Q = Re(Q)) = Re(Q,) a real symplectic form.
o f € C®(M) gives rise to a Hamiltonian vector field
Xr = Q7 Y(df) whose flow ¢f satisfy (¢f)*Q = Q.
o = (Q/,9y, := (¢£)*(Q,)) satisfy the conditions (1), (2), (3)
for |t]| < e.

Example

If (M*" goy, 1, J, K) is a hyper-Kihler manifold, then it admits
many non-Kahler GK metrics.
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Non-degenerate GK structures:
Conceptual picture

(M4 Q;,Q,) a compact non-degenerate GK mfd,
Q = Re(Q)) = Re(Qy), G = Ham(M, Q) = <¢{, fe C°°(M)> the
group of Hamiltonian diffeomorphisms
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Non-degenerate GK structures:
Conceptual picture

(M4 Q;,Q,) a compact non-degenerate GK mfd,
Q = Re(Q)) = Re(Qy), G = Ham(M, Q) = <¢{, fe C°°(M)> the
group of Hamiltonian diffeomorphisms

e G x G acts on (£2/,€) preserving (1) and (2) and locally (3):

Ko =1 (6(90),9°(2))), (6,9) € G x G
(6%(), ¥ () satisfy (3)}.
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Non-degenerate GK structures:
Conceptual picture

(M4 Q;,Q,) a compact non-degenerate GK mfd,
Q = Re(Q)) = Re(Qy), G = Ham(M, Q) = <¢{, fe C°°(M)> the
group of Hamiltonian diffeomorphisms

e G x G acts on (€,£) preserving (1) and (2) and locally (3):
K(CQHQJ) ::{(¢*(Ql)7w*(QJ)),(¢,¢) eGxG:
(6*(), ¥ () satisty (3)},

* Gg={(¢,¢) € Gx G:¢c G} acts globally on K, o, ) and

K0, =Ko, a,)/Cd
={ (9, 0"()) : (1, 6"(2)) satisfies (3)}.
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Non-degenerate GK structures:
Conceptual picture

Theorem 1 (Streets-A.)

K(CQ, Q) has a formal symplectic structure 2 such that G4 acts
with moment map

(@, Q) = (Tm(Qy -0 J,))z" —A(tm(2 + 2 J,))z",

_ Juu=9,)*

where X := @)

is a topological constant.
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Non-degenerate GK structures:
Conceptual picture

Conjecture (GIT package)
K(CQI’QJ) admits a unique up to the action of Gy pair (2, Q)
such that

u(@, Q) = (Tm() - QJ,))Q" — A(tm(e + QJ,))zn —0



Plan of the lecture  Calabi—Yau Geometry  Generalized Kdhler Geometry ~ Non-degenerate GK structures  Analytic Results

Non-degenerate GK structures:
Conceptual picture

Conjecture (GIT package)

K(CQI’QJ) admits a unique up to the action of Gy pair (2, Q)
such that

u(@r, Q) = (Tm(Qy - QJ,))Q" — A(tm(e + QJ,))2" —0

Equivalently, there exists a unique non-degenerate GK structure
(21,0"())) € Ka,.0,) (¢ € Ham(M, Q)) such that

B (Im(Q, ~Q J,))2"

®:= 2n
<Im(Q, +Q J,))

=\
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Non-degenerate GK structures:
Geometric picture

Lemma (Streets—A.)
Let (Q4,9,) correspond to the GK structure (g, 1, J, b) and

(tm(2 -0 J))2"

(tm(e + J))2"

o =

Then pB'! = —\/=10,0,9 and pB? = —\/=10,0,® are the Ricci
forms of the Bismut connections VB! and VB of (g,1) and
(g, J).
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Non-degenerate GK structures:
Geometric picture

Lemma (Streets—A.)
Let (Q4,9,) correspond to the GK structure (g, 1, J, b) and

(tm(2 -0 J))2"

(tm(e + J))2"

o =

Then pB'! = —\/=10,0,9 and pB? = —\/=10,0,® are the Ricci
forms of the Bismut connections VB! and VB of (g, 1) and
(g,J). If M is compact, ® = \ < pB'! = pBJ = 0.
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Non-degenerate GK structures:
Geometric picture

Corollary (Alexandrov—Ivanov, Ivanov—Papadopoulos)

A compact non-degenerate GK mfd (M, $2;,Q ) satisfies
¢ =\ (Q,9Qy) is hyper-Kahler (g = gcy )
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Non-degenerate GK structures:
Geometric picture

Corollary (Alexandrov—Ivanov, Ivanov—Papadopoulos)

A compact non-degenerate GK mfd (M, $2;,Q ) satisfies

¢ =\ (Q,9Qy) is hyper-Kahler (g = gcy )

Conjecture (Calabi—Yau Conjecture for non-degenerate GK
structures)

Let (M,€;,Q,) be a compact non-degenerate GK manifold. Then
3l (2, 90*(2y)) (¢ € Ham(£2)) which corresponds to a
hyper-Kahler structure.
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Non-degenerate GK structures:
Geometric picture

Corollary (Alexandrov—Ivanov, Ivanov—Papadopoulos)

A compact non-degenerate GK mfd (M, $2;,Q ) satisfies
¢ =\ (Q,9Qy) is hyper-Kahler (g = gcy )

Conjecture (Calabi—Yau Conjecture for non-degenerate GK
structures)

Let (M,€;,Q,) be a compact non-degenerate GK manifold. Then
3l (2, 90*(2y)) (¢ € Ham(£2)) which corresponds to a
hyper-Kahler structure.

&> each non-degenerate GK structure is obtained from the Joyce
construction and K{q, q,) is a (non-abelian) analog of a Kahler
class.
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Non-degenerate GK structures:
Proving the conjecture

Recall:

Theorem (Cao)

Let (X™,©) be a CY manifold. Then, for any Kahler metric wg
the solution to the Kahler-Ricci flow

awt = _2pwt7 (wt)|t:0 = wo

exists for all t € [0, +00), wt € Ky) and lim;—oo wr = wey in C*°.
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Non-degenerate GK structures:
Proving the conjecture

Recall:

Theorem (Cao)

Let (X™,©) be a CY manifold. Then, for any Kahler metric wg
the solution to the Kahler-Ricci flow

0
awt = _2pwt7 (wf)|t:o = Wo

exists for all t € [0, +00), wt € Ky) and lim;—oo wr = wey in C*°.
Main tool is the reduction to a parabolic Monge-Ampere PDE:

m

8 wy
5Pt = 2lo g(@ @> MA(pr), ¢t € K-
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Non-degenerate GK structures:
Proving the conjecture

Theorem (Streets—Tian)

Let (M, g,!l,J,b) be a compact GK manifold. Then, the solution
wr = g¢l to the generalized Kadhler Ricci flow

0
5t = —2(pBNY, (we))y = wi(= gl)

exists for t € [0, Timax) and 3 (J, be) s.t. (gt, 1, Jt, be) is GK.
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Non-degenerate GK structures:
Proving the conjecture

Theorem (Streets—Tian)
Let (M, g,!l,J,b) be a compact GK manifold. Then, the solution
wr = g¢l to the generalized Kadhler Ricci flow

0
5t = —2(pBNY, (we))y = wi(= gl)

exists for t € [0, Timax) and 3 (J, be) s.t. (gt, 1, Jt, be) is GK.
This is a parabolic system (not a single PDE) so there is no C*

(deGiorgi—-Nash—Moser/Krylov—Safonov) estimate nor C>¢
(Evans—Krylov) estimate...
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Non-degenerate GK structures:
Proving the conjecture

Theorem 2 (Streets-A.)

Let (M,Q;,Q,) be a compact non-degenerate GK mdf and

(gt, 1, Jt, bt) the solution of the GK Ricci flow starting from
(81,9,). Then (gt,1, Ji, bt) corresponds to (£21,2,,) € Kiq,0))
where Q, = ¢;(Q2y) for ¢ being the hamiltonian isotopy
generated by the momentum ®,.
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Non-degenerate GK structures:
Proving the conjecture

Theorem 2 (Streets-A.)

Let (M,Q;,Q,) be a compact non-degenerate GK mdf and

(gt, 1, Jt, bt) the solution of the GK Ricci flow starting from
(81,9,). Then (gt,1, Ji, bt) corresponds to (£21,2,,) € Kiq,0))
where Q, = ¢;(Q2y) for ¢ being the hamiltonian isotopy
generated by the momentum ®;. Furthermore,

0

8t¢t - _Agtq)t
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Non-degenerate GK structures:
Proving the conjecture

Using the maximum principle for

0

8t¢t — _Agtq)t

Corollary (New a priori estimates)

Let (M,$;,8,) be a compact non-degenerate GK mdf and
(gt,1,Jt, be), t € [0, Timax) the solution of the GK Ricci flow
starting from (;,Q). Then

sup [P < sup [P
M %[0, Trmax) Mx{0}

sup [V, < 71 sup |0f?)
Mx{t} Mx{0}

Analytic Results



Plan of the lecture  Calabi—Yau Geometry  Generalized Kahler Geometry ~ Non-degenerate GK structures

Non-degenerate GK structures:
Proving the conjecture

Using the maximum principle for

0
aq)t — _Agtth

Corollary (New a priori estimates)

Let (M,Q;,Q,) be a compact non-degenerate GK mdf and
(gt 1, Ji, bt), t € [0, Tinax) the solution of the GK Ricci flow
starting from (2;,€2;). Then

sup Py < sup |Dol= wf” < ng”, |bt\2 <C
Mx [0, Tmax) Mx {0}

sup |Vd>t]2 < t_1< sup \¢o|2):> lim &, =\
Mx{t} Mx {0} t—o0

Analytic Results
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 3 (Streets-A.)

Let (M, go, I, Jo, bo) be a compact non-degenerate GK mdf and
(gt,1,Jt, bt), t € [0, Trax) the solution of the GK Ricci flow.
Suppose there exits a uniform constant C > 0 s.t.

1
& < g+ < Cgo.

Then Tpax = 00, limt— o0 8t = 8o In C*° and (g, |, Jo, boo) is
Hyper-Kahler with J, = ¢5.(J), ¢oo € Ham(M, Q).
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 3 (Streets-A.)

Let (M, go, I, Jo, bo) be a compact non-degenerate GK mdf and
(gt,1,Jt, bt), t € [0, Trax) the solution of the GK Ricci flow.
Suppose there exits a uniform constant C > 0 s.t.

1
& < g+ < Cgo.

Then Tpax = 00, limt— o0 8t = 8o In C*° and (g, |, Jo, boo) is
Hyper-Kahler with J, = ¢5.(J), ¢oo € Ham(M, Q).
= the Calabi—Yau conjecture for non-degenerate GK holds true.
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 4 (Streets-A.)

Let (M, go, !, Jo, bo) be a compact non-degenerate GK mdf and
(gt,1,Jt, bt), t € [0, Trax) the solution of the GK Ricci flow.
Suppose (M, 1) is CY. Then there exits a constant

C = C(Tmax) >0 s.t.

1
8 < g+ < Cgo,
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 4 (Streets-A.)

Let (M, go, !, Jo, bo) be a compact non-degenerate GK mdf and
(gt,1,Jt, bt), t € [0, Trax) the solution of the GK Ricci flow.
Suppose (M, 1) is CY. Then there exits a constant

C = C(Tmax) >0 s.t.

1
8 < g+ < Cgo,

= Tmax = 00, liM¢_0o Wt = Weo Where w, is a closed (1,1)
current on (M, 1).
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THANK YOU !
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