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Plan of the talk

1. The Calabi program and Calabi–Yau manifolds

• E. Calabi, On Kähler manifolds with vanishing canonical class,
Princeton University Press, Mathematical Series, 1957;

• Y.-S. Yau, Calabi’s conjecture and some new results in
algebraic geometry, Proc. National Acad. Sci. U.S. A., 1977.

2. Generalized Kähler geometry
• S. Gates, J. Hull, M. Rocek, Twisted multiplets and new

supersymmetric nonlinear σ-models. Nuclear Phys. B, 1984;
• N. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math.,

2003;
• M. Gualtieri, Generalized Kähler geometry, Comm. Math.

Phys., 2014.

3. Calabi–Yau conjecture in generalized Kähler geometry
joint work with Jeff Streets (UCI): arXiv:1703.08650.
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Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold X m
C = (M2m

R , J) is
Calabi–Yau if

• X admits a Kähler metric ω0. In a holomorphic chart

ω0 =
√
−1∂∂̄f :=

√
−1

m∑
i ,j=1

( ∂2f

∂zi∂z̄j

)
(z)dzi ∧ dz̄j

with
(

∂2f
∂zi∂z̄j

)
(z) > 0, and

• KX = OK i.e. X admits a nowhere-vanishing holomorphic
section Θ ∈ H0(KX ) = H0(X ,Ωm,0(X )).

Θ = θ(z)dz1 ∧ · · · ∧ dzm

with θ(z) holomorphic and θ(z) 6= 0.
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Calabi–Yau complex manifolds

Examples of CY manifolds

• (tori) X m = Cm/(Zm ⊕
√
−1Zm) = T m

C with

ω0 =

√
−1

2

m∑
j=1

dzj ∧ dz̄j , Θ = dz1 ∧ · · · ∧ dzm.

• X m ⊂ Pm+1 of degree m + 2 is CY (X is projective with
KX = O).

• Deforming the complex structure in the above examples leads
to CY manifolds: each elliptic complex curve and each K 3
complex surface is CY.
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The Kähler geometry of CY manifolds

Definition (Kähler class)

A Kähler class of Kähler metrics on X is the space of smooth
functions

K[ω0] := {ϕ ∈ C∞(X ) : ωϕ := ω0 +
√
−1∂∂̄ϕ > 0},

where ω0 is a given (reference) Kähler metric.

[ωϕ] = [ω0] = α ∈ H2
dR(X ,R).

Example (dimCX = 1)

Any riemannian metric is determined in a holomorphic chart by
ω0 =

√
−1h(z)dz ∧ dz̄ , h > 0. Any other Riemannian metric is

written as ω = eψω0, ψ ∈ C∞(X ).

ω = ω0 +
√
−1∂∂̄ϕ⇐⇒ ∆ω0ϕ = (1− eψ)⇐⇒

∫
X
ω =

∫
X
ω0.
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Definition (Kähler class)

A Kähler class of Kähler metrics on X is the space of smooth
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where ω0 is a given (reference) Kähler metric.
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−1h(z)dz ∧ dz̄ , h > 0. Any other Riemannian metric is
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The Kähler geometry of CY manifolds

Definition (Ricci form)

The Ricci form of a Kähler metric ω on X is

ρω :=
√
−1∂∂̄ log

(Θ ∧ Θ̄

ωm

)
where Θ is any local holomorphic (m, 0)-form.

Example (dimCX = 1)

Any riemannian metric is determined in a holomorphic chart by
ω =
√
−1h(z)dz ∧ dz̄ , h > 0. For Θ = dz we get

ρω = K (z)ω

where K (z) = − 1
h(z) ∆0 log h(z) is the Gauss curvature.
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The Kähler geometry of CY manifolds

Definition (Ricci form)

The Ricci form of a Kähler metric ω on X is

ρω :=
√
−1∂∂̄ log

(Θ ∧ Θ̄

ωm

)
where Θ is any local holomorphic (m, 0)-form.

Theorem (Yau)

Let (X m,Θ) be a CY manifold. Then, ∃ unique

ωCY = ω0 +
√
−1∂∂̄ϕ ∈ K[ω0]

such that

ρωCY = 0

⇐⇒ (ωCY)∧m = λ
(
Θ ∧ Θ̄

)
, λ = const.
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The Kähler geometry of CY manifolds

Definition (Kähler Ricci flow)

The Kähler Ricci flow starting from a Kähler metric ω0 on X is
any smooth family of Kähler metrics ωt solving the geometric PDE

∂

∂t
ωt = −2ρωt , (ωt)|t=0

= ω0.

Theorem (Cao)

Let (X m,Θ) be a CY manifold. Then, for any Kähler metric ω0

the solution to the Kähler-Ricci flow exists for all t ∈ [0,+∞),
ωt ∈ K[ω0] and limt→∞ ωt = ωCY in C∞.
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The Kähler geometry of CY manifolds
Summary: The Calabi Program

• The Kähler geometry is described in terms of Kähler classes
Kα where α = [ω0] ∈ H2

dR(X ,R) ∩ H1,1(X ,C) runs over the
Kähler cone.

• (uniqueness) Each Kähler class Kα contains a unique
canonical representative ωCY,α and any other Kähler metric
ω ∈ Kα is written

ω = ωCY,α +
√
−1∂∂̄ϕ, ϕ ∈ C∞(X ).

• (connectedness) The Kähler Ricci flow allows one to reach the
canonical representative ωCY,α.
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Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) 2m-dimensional
manifold M2m

R is defined by the data (I , J, g , b) where:

• I and J are two complex structures on M2m
R ;

• g is a Riemannian metric compatible with I and J, i.e.

g(J·, J·) = g(I ·, I ·) = g(·, ·).
• b is a 2-form;

• a first order compatibility relation

∂IωI =
√
−1∂̄I (b2,0

I ), ∂JωJ = −
√
−1∂̄J(b2,0

J ),

where ωI = gI , ωJ = gJ are the Kähler forms.
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Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Example (trivial)

X = (M2m, I ) a complex manifold and (g , ωI ) a Kähler metric.
Then, letting J := −I , b := 0 we obtain a GK structure (g , I , J, b).

Problem
Are there non-trivial examples?
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Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for m = 2; Hitchin for m ≥ 2)

Let (M2m, g , I , J, b) be GK and σ := (IJ − JI )g−1 ∈ Γ(∧2TM).
Then σI := σ −

√
−1(Iσ) ∈ H0(M,∧2(T 1,0

I M)) is Holomorphic
Poisson on X = (M, I ),

i.e. in a holomorphic chart

σI =
1

2

m∑
i ,j=1

σij(z)
( ∂

∂zi
∧ ∂

∂zj

)
, (σij = −σji )

with σij(z) holomorphic, and

[σI , σI ] = 0⇔
m∑
`=1

( ∑
(ijk)∈S3

σi`(z)
∂σjk

∂z`
(z)
)

= 0.

Corollary (Gualtieri-A.)

If X is complex surface of general type not covered by D×D, then
6 ∃ non-trivial GK structures.
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Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Some basic open problems

Let X = (M2m, I ) be a compact complex manifold and σI 6= 0 is a
holomorphic Poisson structure.

• Is there a non-trivial GK structure (g , I , J, b) with
σ = (IJ − JI )g−1 = Re(σI )?
True if m = 2 (Goto) or if (X , σI ) is a toric variety
(Boulanger).

• If (X , σI ) admits a compatible GK structure does X = (M, I )
admit a Kähler metric?
True if m = 2 (Gauduchon–Grantcharov–A., Gualtieri–A.)

• Describe the GK geometry of (X , σI ) in a similar way as we
described the Kähler geometry of a CY manifold.
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g , I , J, b) on M2m is called non-degenerate if
the holomorphic Poisson structure

σI = σ −
√
−1(Iσ) =

1

2

m∑
i ,j=1

σij(z)
∂

∂zi
∧ ∂

∂zj

is non-degenerate, i.e. detC(σij(z)) 6= 0

(=⇒ m = 2n)

• ⇐⇒ σI : T ∗X
∼= TX where X = (M, I );

• ⇐⇒ σ : T ∗M
∼= TM ;

• ⇐⇒ σJ : T ∗Y
∼= TY where Y = (M, J).
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Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g , I , J, b) on M2m is called non-degenerate if
the holomorphic Poisson structure

σI = σ −
√
−1(Iσ) =

1

2

m∑
i ,j=1

σij(z)
∂

∂zi
∧ ∂

∂zj

is non-degenerate, i.e. detC(σij(z)) 6= 0

• ⇐⇒ ΩI = σ−1
I is closed and non-degenerate (2, 0)-form on X ,

• ⇐⇒ Ω = σ−1 = Re(ΩI ) a closed and non-degenerate real
2-form on M,
• ⇐⇒ ΩJ = σ−1

J is closed and non-degenerate (2, 0)-form on Y .
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Non-degenerate GK structures: revisited

Lemma (Reduction of non-degenerate GK structures)

On M4n we have a bijection

{non− degenerate GK structures} ←→ {(ΩI ,ΩJ)}

where ΩI ,ΩJ are closed complex-valued 2-forms satisfying

(1) Re(ΩI ) = Re(ΩJ) = Ω is a real symplectic form;

(2) Im(ΩI ) = Ω ◦ I , Im(ΩJ) = Ω ◦ J for I , J integrable almost
complex structures;

(3) ωI := −2
(

Im(ΩJ)
)1,1

I
> 0 (g = −ωI ◦ I ).
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Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A holomorphic symplectic manifold is a smooth, compact,
complex m = 2n dimensional manifold X 2n = (M4n, I ) which
admits a closed non-degenerate (2, 0)-form ΩI .

In a holomorphic chart:

ΩI =
1

2

2n∑
i ,j=1

ωij(z)dzi ∧ dzj , (ωij = −ωji )

with ωij(z) holomorphic functions, s.t. detC(ωij(z)) 6= 0 and∑
(ijk)∈S3

∂ωij

∂zk
(z) = 0.
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Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A holomorphic symplectic manifold is a smooth, compact,
complex m = 2n dimensional manifold X 2n = (M4n, I ) which
admits a closed non-degenerate (2, 0)-form ΩI .

Fact
If (X ,ΩI ) is holomorphic symplectic then

Θ := (ΩI )
∧n =

(
detC

(
ωij(z)

)) 1
2
dz1 ∧ · · · ∧ dz2n

trivializes KX , i.e. X is CY if it admits a Kähler metric.
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Non-degenerate GK structures: Examples

Suppose X = (M, I ) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric gCY on X is hyper-Kähler, i.e. gCY is
Kähler with respect to 3 complex structures (I , J,K ) satisfying the
quaternion relations, and

ΩI = λ(ωJ +
√
−1ωK ), λ ∈ C×,

where ωI , ωJ , ωK are the Kähler forms.

For ΩI := 1
2

(
−ωK +

√
−1ωJ

)
,ΩJ := 1

2

(
−ωK −

√
−1ωI

)
we have

(1) Re(ΩI ) = Re(ΩJ) = Ω (= −1
2ωK );

(2) Im(ΩI ) = Ω ◦ I , Im(ΩJ) = Ω ◦ J for I , J integrable almost
complex structures;

(3) −2
(

Im(ΩJ)
)1,1

I
= ωI > 0.
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Non-degenerate GK structures: Examples

Suppose X = (M, I ) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric gCY on X is hyper-Kähler, i.e. gCY is
Kähler with respect to 3 complex structures (I , J,K ) satisfying the
quaternion relations, and

ΩI = λ(ωJ +
√
−1ωK ), λ ∈ C×,

where ωI , ωJ , ωK are the Kähler forms.

Example

If (M4n, gCY, I , J,K ) is a hyper-Kähler manifold, then

ΩI :=
1

2

(
− ωK +

√
−1ωJ

)
,ΩJ :=

1

2

(
− ωK −

√
−1ωI

)
defines a non-degenerate GK structure on M with g = gCY.
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Non-degenerate GK structures: Examples

Lemma (Joyce’s deformation)

(M,ΩI ,ΩJ) compact non-degenerate GK mfd,
Ω = Re(ΩI ) = Re(ΩJ) a real symplectic form.

• f ∈ C∞(M) gives rise to a Hamiltonian vector field
Xf = Ω−1(df ) whose flow φf

t satisfy (φf
t )∗Ω = Ω.

• =⇒ (ΩI ,ΩJt := (φf
t )∗(ΩJ)) satisfy the conditions (1), (2), (3)

for |t| < ε.

Example

If (M4n, gCY, I , J,K ) is a hyper-Kähler manifold, then it admits
many non-Kähler GK metrics.
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Non-degenerate GK structures:
Conceptual picture

(M4n,ΩI ,ΩJ) a compact non-degenerate GK mfd,

Ω = Re(ΩI ) = Re(ΩJ), G = Ham(M,Ω) =
〈
φf

1, f ∈ C∞(M)
〉

the

group of Hamiltonian diffeomorphisms

• G ×G acts on (ΩI ,ΩJ) preserving (1) and (2) and locally (3):

K c
(ΩI ,ΩJ) :=

{(
φ∗(ΩI ), ψ

∗(ΩJ)
)
, (φ, ψ) ∈ G × G :(

φ∗(ΩI ), ψ
∗(ΩJ)

)
satisfy (3)

}
.

• Gd = {(φ, φ) ∈ G × G : φ ∈ G} acts globally on K c
(ΩI ,ΩJ) and

K(ΩI ,ΩJ) :=K c
(ΩI ,ΩJ)/Gd

∼=
{(

ΩI , φ
∗(ΩJ)

)
:
(
ΩI , φ

∗(ΩJ)
)

satisfies (3)
}
.
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Non-degenerate GK structures:
Conceptual picture

Theorem 1 (Streets–A.)

K c
(ΩI ,ΩJ) has a formal symplectic structure Ω such that Gd acts

with moment map

µ(ΩI ′ ,ΩJ′) =
(

Im(ΩI ′ − ΩJ′)
)2n
− λ
(

Im(ΩI ′ + ΩJ′)
)2n

,

where λ :=
R
M(ΩI−ΩJ)2nR
M(ΩI +ΩJ)2n is a topological constant.
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Non-degenerate GK structures:
Conceptual picture

Conjecture (GIT package)

K c
(ΩI ,ΩJ) admits a unique up to the action of Gd pair (ΩI ′ ,ΩJ′)

such that

µ(ΩI ′ ,ΩJ′) =
(

Im(ΩI ′ − ΩJ′)
)2n
− λ

(
Im(ΩI ′ + ΩJ′)

)2n
= 0

Equivalently, there exists a unique non-degenerate GK structure
(ΩI , φ

∗(ΩJ)) ∈ K(ΩI ,ΩJ) (φ ∈ Ham(M,Ω)) such that

Φ :=

(
Im(ΩI − ΩJ′)

)2n

(
Im(ΩI + ΩJ′)

)2n
= λ.
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Non-degenerate GK structures:
Geometric picture

Lemma (Streets–A.)

Let (ΩI ,ΩJ) correspond to the GK structure (g , I , J, b) and

Φ =

(
Im(ΩI − ΩJ)

)2n

(
Im(ΩI + ΩJ)

)2n
.

Then ρB,I = −
√
−1∂J ∂̄JΦ and ρB,J = −

√
−1∂I ∂̄I Φ are the Ricci

forms of the Bismut connections ∇B,I and ∇B,J of (g , I ) and
(g , J).

If M is compact, Φ = λ⇔ ρB,I = ρB,J = 0.
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Non-degenerate GK structures:
Geometric picture

Corollary (Alexandrov–Ivanov, Ivanov–Papadopoulos)

A compact non-degenerate GK mfd (M,ΩI ,ΩJ) satisfies
Φ = λ⇔ (ΩI ,ΩJ) is hyper-Kähler (g = gCY).

Conjecture (Calabi–Yau Conjecture for non-degenerate GK
structures)

Let (M,ΩI ,ΩJ) be a compact non-degenerate GK manifold. Then
∃! (ΩI , φ

∗(ΩJ)) (φ ∈ Ham(Ω)) which corresponds to a
hyper-Kähler structure.
⇔ each non-degenerate GK structure is obtained from the Joyce
construction and K(ΩI ,ΩJ) is a (non-abelian) analog of a Kähler
class.
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Non-degenerate GK structures:
Proving the conjecture

Recall:

Theorem (Cao)

Let (X m,Θ) be a CY manifold. Then, for any Kähler metric ω0

the solution to the Kähler-Ricci flow

∂

∂t
ωt = −2ρωt , (ωt)|t=0

= ω0

exists for all t ∈ [0,+∞), ωt ∈ K[ω0] and limt→∞ ωt = ωCY in C∞.

Main tool is the reduction to a parabolic Monge-Ampère PDE:

∂

∂t
ϕt = 2 log

( ωm
ϕt

Θ ∧ Θ̄

)
= MA(ϕt), ϕt ∈ K[ω0].
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Non-degenerate GK structures:
Proving the conjecture

Theorem (Streets–Tian)

Let (M, g , I , J, b) be a compact GK manifold. Then, the solution
ωt = gt I to the generalized Kähler Ricci flow

∂

∂t
ωt = −2(ρB,I

ωt
)1,1
I , (ωt)|t=0

= ωI (= gI )

exists for t ∈ [0,Tmax) and ∃ (Jt , bt) s.t. (gt , I , Jt , bt) is GK.

This is a parabolic system (not a single PDE) so there is no Cα

(deGiorgi–Nash–Moser/Krylov–Safonov) estimate nor C 2,α

(Evans–Krylov) estimate...
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Non-degenerate GK structures:
Proving the conjecture

Theorem 2 (Streets–A.)

Let (M,ΩI ,ΩJ) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt) the solution of the GK Ricci flow starting from
(ΩI ,ΩJ). Then (gt , I , Jt , bt) corresponds to (ΩI ,ΩJt ) ∈ K(ΩI ,ΩJ)

where ΩJt = φ∗t (ΩJ) for φt being the hamiltonian isotopy
generated by the momentum Φt .

Furthermore,

∂

∂t
Φt = −∆gt Φt
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Non-degenerate GK structures:
Proving the conjecture

Theorem 2 (Streets–A.)

Let (M,ΩI ,ΩJ) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt) the solution of the GK Ricci flow starting from
(ΩI ,ΩJ). Then (gt , I , Jt , bt) corresponds to (ΩI ,ΩJt ) ∈ K(ΩI ,ΩJ)

where ΩJt = φ∗t (ΩJ) for φt being the hamiltonian isotopy
generated by the momentum Φt . Furthermore,

∂

∂t
Φt = −∆gt Φt
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Non-degenerate GK structures:
Proving the conjecture

Using the maximum principle for

∂

∂t
Φt = −∆gt Φt

Corollary (New a priori estimates)

Let (M,ΩI ,ΩJ) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt), t ∈ [0,Tmax) the solution of the GK Ricci flow
starting from (ΩI ,ΩJ). Then

sup
M×[0,Tmax)

|Φt | ≤ sup
M×{0}

|Φ0|

sup
M×{t}

|∇Φt |2 ≤ t−1
(

sup
M×{0}

|Φ0|2
)
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Non-degenerate GK structures:
Proving the conjecture

Using the maximum principle for

∂

∂t
Φt = −∆gt Φt

Corollary (New a priori estimates)

Let (M,ΩI ,ΩJ) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt), t ∈ [0,Tmax) the solution of the GK Ricci flow
starting from (ΩI ,ΩJ). Then

sup
M×[0,Tmax)

|Φt | ≤ sup
M×{0}

|Φ0|⇒ ω2n
t ≤ Cω2n

0 , |bt |2 ≤ C

sup
M×{t}

|∇Φt |2 ≤ t−1
(

sup
M×{0}

|Φ0|2
)
⇒ lim

t→∞
Φt = λ
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 3 (Streets–A.)

Let (M, g0, I , J0, b0) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt), t ∈ [0,Tmax) the solution of the GK Ricci flow.
Suppose there exits a uniform constant C > 0 s.t.

1

C
g0 ≤ gt ≤ Cg0,

Then Tmax =∞, limt→∞ gt = g∞ in C∞ and (g∞, I , J∞, b∞) is
Hyper-Kähler with J∞ = φ∗∞(J0), φ∞ ∈ Ham(M,Ω).

⇒ the Calabi–Yau conjecture for non-degenerate GK holds true.
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 3 (Streets–A.)

Let (M, g0, I , J0, b0) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt), t ∈ [0,Tmax) the solution of the GK Ricci flow.
Suppose there exits a uniform constant C > 0 s.t.

1

C
g0 ≤ gt ≤ Cg0,

Then Tmax =∞, limt→∞ gt = g∞ in C∞ and (g∞, I , J∞, b∞) is
Hyper-Kähler with J∞ = φ∗∞(J0), φ∞ ∈ Ham(M,Ω).
⇒ the Calabi–Yau conjecture for non-degenerate GK holds true.
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 4 (Streets–A.)

Let (M, g0, I , J0, b0) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt), t ∈ [0,Tmax) the solution of the GK Ricci flow.
Suppose (M, I ) is CY. Then there exits a constant
C = C (Tmax) > 0 s.t.

1

C
g0 ≤ gt ≤ Cg0,

⇒ Tmax =∞, limt→∞ ωt = ω∞ where ω∞ is a closed (1, 1)
current on (M, I ).
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Non-degenerate GK structures:
Using the a priori estimates

Theorem 4 (Streets–A.)

Let (M, g0, I , J0, b0) be a compact non-degenerate GK mdf and
(gt , I , Jt , bt), t ∈ [0,Tmax) the solution of the GK Ricci flow.
Suppose (M, I ) is CY. Then there exits a constant
C = C (Tmax) > 0 s.t.

1

C
g0 ≤ gt ≤ Cg0,

⇒ Tmax =∞, limt→∞ ωt = ω∞ where ω∞ is a closed (1, 1)
current on (M, I ).
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THANK YOU !
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