The Generalized Kähler Geometry of Holomorphic Symplectic Manifolds

Vestislav Apostolov

MDS
Sofia, July, 2017
Plan of the talk

1. The Calabi program and Calabi–Yau manifolds

2. Generalized Kähler geometry

3. Calabi–Yau conjecture in generalized Kähler geometry
Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold $X^m_{\mathbb{C}} = (M^m_{\mathbb{R}}, J)$ is **Calabi–Yau** if
Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold $X^m = (M_{2m}, J)$ is Calabi–Yau if

- X admits a Kähler metric ω_0.

In a holomorphic chart $\omega_0 = \sqrt{-1} \frac{\partial}{\partial z_i} \frac{\partial}{\partial \bar{z}_j} f := \sqrt{-1} \sum_{i,j=1}^{m} (\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}) (z) \, dz_i \wedge d\bar{z}_j$ with $\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) > 0$, and

$\Theta = \theta(z) \, dz_1 \wedge \cdots \wedge dz_m$ with $\theta(z)$ holomorphic and $\theta(z) \neq 0$.

Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold $X^m = (M_\mathbb{R}^{2m}, J)$ is **Calabi–Yau** if

- X admits a Kähler metric ω_0. In a holomorphic chart

$$\omega_0 = \sqrt{-1} \partial \bar{\partial} f := \sqrt{-1} \sum_{i,j=1}^{m} \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) dz_i \wedge d\bar{z}_j$$

with $\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) > 0$,

- $K_X = \mathcal{O}_X$, i.e. X admits a nowhere-vanishing holomorphic section $\Theta \in H^0(K_X) = H^0(X, \Omega^m)$. $\Theta = \theta(z) dz_1 \wedge \cdots \wedge dz_m$ with $\theta(z)$ holomorphic and $\theta(z) \neq 0$.

Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold $X_m = (M_{2m}^2, J)$ is **Calabi–Yau** if

- X admits a Kähler metric ω_0. In a holomorphic chart

$$\omega_0 = \sqrt{-1} \partial \bar{\partial} f := \sqrt{-1} \sum_{i,j=1}^{m} \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) dz_i \wedge d\bar{z}_j$$

with $\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) > 0$, and

- $K_X = \mathcal{O}_K$
Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold $X^m = (M^{2m}, J)$ is **Calabi–Yau** if

- X admits a Kähler metric ω_0. In a holomorphic chart
 \[
 \omega_0 = \sqrt{-1} \partial \bar{\partial} f := \sqrt{-1} \sum_{i,j=1}^{m} \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) dz_i \wedge d\bar{z}_j
 \]
 with $\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) > 0$, and

- $K_X = \mathcal{O}_K$ i.e. X admits a nowhere-vanishing holomorphic section $\Theta \in H^0(K_X) = H^0(X, \Omega^{m,0}(X))$.
Calabi–Yau complex manifolds

Definition (Calabi–Yau manifold)

A compact complex m-dimensional manifold $X_m = (M, J)$ is **Calabi–Yau** if

- X admits a Kähler metric ω_0. In a holomorphic chart

$$\omega_0 = \sqrt{-1} \partial \bar{\partial} f := \sqrt{-1} \sum_{i,j=1}^{m} \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) dz_i \wedge d\bar{z}_j$$

with $\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j} \right)(z) > 0$, and

- $K_X = \mathcal{O}_X$ i.e. X admits a nowhere-vanishing holomorphic section $\Theta \in H^0(K_X) = H^0(X, \Omega^m, 0(X))$.

$$\Theta = \theta(z) dz_1 \wedge \cdots \wedge dz_m$$

with $\theta(z)$ holomorphic and $\theta(z) \neq 0$.
Calabi–Yau complex manifolds

Examples of CY manifolds

- (tori) \(X^m = \mathbb{C}^m / (\mathbb{Z}^m \oplus \sqrt{-1}\mathbb{Z}^m) = T^m_{\mathbb{C}} \) with

\[
\omega_0 = \frac{\sqrt{-1}}{2} \sum_{j=1}^{m} dz_j \wedge d\bar{z}_j, \quad \Theta = dz_1 \wedge \cdots \wedge dz_m.
\]
Calabi–Yau complex manifolds

Examples of CY manifolds

- (tori) $X^m = \mathbb{C}^m / (\mathbb{Z}^m \oplus \sqrt{-1}\mathbb{Z}^m) = T^m_{\mathbb{C}}$ with
 \[
 \omega_0 = \frac{\sqrt{-1}}{2} \sum_{j=1}^{m} dz_j \wedge d\bar{z}_j, \quad \Theta = dz_1 \wedge \cdots \wedge dz_m.
 \]

- $X^m \subset \mathbb{P}^{m+1}$ of degree $m + 2$ is CY (X is projective with $K_X = O$).
Calabi–Yau complex manifolds

Examples of CY manifolds

• (tori) $X^m = \mathbb{C}^m / (\mathbb{Z}^m \oplus \sqrt{-1} \mathbb{Z}^m) = T^m_\mathbb{C}$ with

 $$\omega_0 = \frac{\sqrt{-1}}{2} \sum_{j=1}^{m} dz_j \wedge d\bar{z}_j, \quad \Theta = dz_1 \wedge \cdots \wedge dz_m.$$

• $X^m \subset \mathbb{P}^{m+1}$ of degree $m + 2$ is CY (X is projective with $K_X = \mathcal{O}$).

• Deforming the complex structure in the above examples leads to CY manifolds: each elliptic complex curve and each $K3$ complex surface is CY.
The Kähler geometry of CY manifolds

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[ω_0]} := \{ ϕ ∈ C^∞(X) : ω_ϕ := ω_0 + \sqrt{-1}∂∂ϕ > 0 \},$$

where $ω_0$ is a given (reference) Kähler metric.
The Kähler geometry of CY manifolds

Definition (Kähler class)

A Kähler class of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^\infty(X) : \omega_\varphi := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$[\omega_\varphi] = [\omega_0] = \alpha \in H^2_{dR}(X, \mathbb{R})$.
The Kähler geometry of CY manifolds

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^\infty(X) : \omega_\varphi := \omega_0 + \sqrt{-1}\partial\bar{\partial}\varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$[\omega_\varphi] = [\omega_0] = \alpha \in H^2_{d\text{R}}(X, \mathbb{R})$.

Example (**dim}_\mathbb{C}X = 1**)

Any riemannian metric is determined in a holomorphic chart by $\omega_0 = \sqrt{-1}h(z)dz \wedge d\bar{z}, h > 0$.

The Kähler geometry of CY manifolds

Definition (Kähler class)

A Kähler class of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^\infty(X) : \omega_\varphi := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$$[\omega_\varphi] = [\omega_0] = \alpha \in H^2_{dR}(X, \mathbb{R}).$$

Example (dim$_\mathbb{C}X = 1$)

Any riemannian metric is determined in a holomorphic chart by

$$\omega_0 = \sqrt{-1} h(z) dz \wedge d\bar{z}, \ h > 0.$$ Any other Riemannian metric is written as $\omega = e^\psi \omega_0, \ \psi \in C^\infty(X)$.
The Kähler geometry of CY manifolds

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^\infty(X) : \omega_\varphi := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$[\omega_\varphi] = [\omega_0] = \alpha \in H^2_{dR}(X, \mathbb{R})$.

Example (dim$_\mathbb{C}X = 1$)

Any riemannian metric is determined in a holomorphic chart by

$$\omega_0 = \sqrt{-1} h(z) dz \wedge d\bar{z}, \; h > 0.$$ Any other Riemannian metric is written as $\omega = e^\psi \omega_0$, $\psi \in C^\infty(X)$.

$$\omega = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi \iff \Delta_{\omega_0} \varphi = (1 - e^\psi) \iff \int_X \omega = \int_X \omega_0.$$
The Kähler geometry of CY manifolds

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^\infty(X) : \omega_\varphi := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

Example ($\dim_\mathbb{C} X = 1$)

Any riemannian metric is determined in a holomorphic chart by $\omega_0 = \sqrt{-1} h(z) dz \wedge d\bar{z}, h > 0$. Any other Riemannian metric is written as $\omega = e^\psi \omega_0, \ \psi \in C^\infty(X)$.

$$K_{[\omega_0]} = \{ \text{volume normalized conformal class on } X \}.$$
The Kähler geometry of CY manifolds

Definition (Ricci form)

The **Ricci form** of a Kähler metric ω on X is

$$
\rho_\omega := \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\Theta \wedge \bar{\Theta}}{\omega^m} \right)
$$

where Θ is any local holomorphic $(m,0)$-form.
The Kähler geometry of CY manifolds

Definition (Ricci form)

The Ricci form of a Kähler metric ω on X is

$$\rho_\omega := \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\Theta \wedge \bar{\Theta}}{\omega^m} \right)$$

where Θ is any local holomorphic $(m,0)$-form.

Example ($\dim_{\mathbb{C}} X = 1$)

Any riemannian metric is determined in a holomorphic chart by $\omega = \sqrt{-1} h(z) dz \wedge d\bar{z}$, $h > 0$. For $\Theta = dz$ we get

$$\rho_\omega = K(z) \omega$$

where $K(z) = -\frac{1}{h(z)} \Delta_0 \log h(z)$ is the Gauss curvature.
The Kähler geometry of CY manifolds

Definition (Ricci form)

The **Ricci form** of a Kähler metric \(\omega \) on \(X \) is

\[
\rho_\omega := \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\Theta \wedge \bar{\Theta}}{\omega^m} \right)
\]

where \(\Theta \) is any local holomorphic \((m,0)\)-form.

Theorem (Yau)

Let \((X^m, \Theta)\) be a CY manifold. Then, \exists unique

\[
\omega_{CY} = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi \in K_{\omega_0}
\]

such that

\[
\rho_{\omega_{CY}} = 0
\]
The Kähler geometry of CY manifolds

Definition (Ricci form)
The Ricci form of a Kähler metric ω on X is

$$\rho_\omega := \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\Theta \wedge \bar{\Theta}}{\omega^m} \right)$$

where Θ is any local holomorphic $(m,0)$-form.

Theorem (Yau)
Let (X^m, Θ) be a CY manifold. Then, \exists unique

$$\omega_{\text{CY}} = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi \in K[\omega_0]$$

such that

$$\rho_{\omega_{\text{CY}}} = 0 \iff (\omega_{\text{CY}})^m = \lambda (\Theta \wedge \bar{\Theta}), \lambda = \text{const.}$$
The Kähler geometry of CY manifolds

Definition (Kähler Ricci flow)

The **Kähler Ricci flow** starting from a Kähler metric \(\omega_0 \) on \(X \) is any smooth family of Kähler metrics \(\omega_t \) solving the geometric PDE

\[
\frac{\partial}{\partial t} \omega_t = -2\rho \omega_t, \quad (\omega_t)|_{t=0} = \omega_0.
\]
The Kähler geometry of CY manifolds

Definition (Kähler Ricci flow)
The Kähler Ricci flow starting from a Kähler metric ω_0 on X is any smooth family of Kähler metrics ω_t solving the geometric PDE

$$\frac{\partial}{\partial t} \omega_t = -2\rho \omega_t, \quad (\omega_t)|_{t=0} = \omega_0.$$

Theorem (Cao)
Let (X^m, Θ) be a CY manifold. Then, for any Kähler metric ω_0 the solution to the Kähler-Ricci flow exists for all $t \in [0, +\infty)$, $\omega_t \in K[\omega_0]$ and $\lim_{t \to \infty} \omega_t = \omega_{CY}$ in C^∞.
The Kähler geometry of CY manifolds

Summary: The Calabi Program

- The Kähler geometry is described in terms of Kähler classes K_α where $\alpha = [\omega_0] \in H^2_{d\Omega}(X, \mathbb{R}) \cap H^{1,1}(X, \mathbb{C})$ runs over the Kähler cone.

- (uniqueness) Each Kähler class K_α contains a unique canonical representative $\omega_{CY,\alpha}$ and any other Kähler metric $\omega \in K_\alpha$ is written

$$\omega = \omega_{CY,\alpha} + \sqrt{-1} \partial \bar{\partial} \varphi, \quad \varphi \in C^\infty(X).$$

- (connectedness) The Kähler Ricci flow allows one to reach the canonical representative $\omega_{CY,\alpha}$.
Generalized Kähler geometry

(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) 2m-dimensional manifold $M_{\mathbb{R}}^{2m}$ is defined by the data (I, J, g, b) where:

- I and J are two complex structures on $M_{\mathbb{R}}^{2m}$;
Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) $2m$-dimensional manifold $M^{2m}_\mathbb{R}$ is defined by the data (I, J, g, b) where:

- I and J are two complex structures on $M^{2m}_\mathbb{R}$;
- g is a Riemannian metric compatible with I and J, i.e.

$$g(J\cdot, J\cdot) = g(I\cdot, I\cdot) = g(\cdot, \cdot).$$
Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) $2m$-dimensional manifold $M^{2m}_\mathbb{R}$ is defined by the data (I,J,g,b) where:

- I and J are two complex structures on $M^{2m}_\mathbb{R}$;
- g is a Riemannian metric compatible with I and J, i.e.

 $$g(J\cdot, J\cdot) = g(I\cdot, I\cdot) = g(\cdot, \cdot).$$

- b is a 2-form;
Generalized Kähler geometry

(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) $2m$-dimensional manifold $M_{\mathbb{R}}^{2m}$ is defined by the data (I, J, g, b) where:

- I and J are two complex structures on $M_{\mathbb{R}}^{2m}$;
- g is a Riemannian metric compatible with I and J, i.e.
 \[g(J\cdot, J\cdot) = g(I\cdot, I\cdot) = g(\cdot, \cdot). \]
- b is a 2-form;
- a first order compatibility relation
 \[\partial_I\omega_I = \sqrt{-1}\bar{\partial}_I(b^2,0), \quad \partial_J\omega_J = -\sqrt{-1}\bar{\partial}_J(b_j^2,0), \]

 where $\omega_I = gI$, $\omega_J = gJ$ are the Kähler forms.
Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Example (trivial)

$X = (M^{2m}, I)$ a complex manifold and (g, ω_I) a Kähler metric. Then, letting $J := -I, b := 0$ we obtain a GK structure (g, I, J, b).
Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Example (trivial)

$X = (M^{2m}, I)$ a complex manifold and (g, ω_I) a Kähler metric. Then, letting $J := -I$, $b := 0$ we obtain a GK structure (g, I, J, b).

Problem

Are there non-trivial examples?
Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for $m = 2$; Hitchin for $m \geq 2$)

Let (M^{2m}, g, I, J, b) be GK and $\sigma := (IJ - JI)g^{-1} \in \Gamma(\wedge^2 TM)$. Then $\sigma_I := \sigma - \sqrt{-1}(I\sigma) \in H^0(M, \wedge^2 (T^1,0 M))$ is Holomorphic Poisson on $X = (M, I)$,
Generalized Kähler geometry

(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for $m = 2$; Hitchin for $m \geq 2$)

Let (M^{2m}, g, I, J, b) be GK and $\sigma := (IJ -JI)g^{-1} \in \Gamma(\wedge^2 TM)$. Then $\sigma_I := \sigma - \sqrt{-1}(I\sigma) \in H^0(M, \wedge^2(T^{1,0}_1 M))$ is Holomorphic Poisson on $X = (M, I)$, i.e. in a holomorphic chart

$$\sigma_I = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \left(\frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j} \right), \quad (\sigma_{ij} = -\sigma_{ji})$$

with $\sigma_{ij}(z)$ holomorphic, and

$$[\sigma_I, \sigma_I] = 0 \iff \sum_{\ell=1}^{m} \left(\sum_{(ijk) \in S_3} \sigma_{i\ell}(z) \frac{\partial \sigma_{jk}}{\partial z_\ell}(z) \right) = 0.$$
Generalized Kähler geometry

(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for \(m = 2 \); Hitchin for \(m \geq 2 \))

Let \((M^{2m}, g, I, J, b)\) be GK and \(\sigma := (IJ - JI)g^{-1} \in \Gamma(\wedge^2 TM)\). Then \(\sigma_I := \sigma - \sqrt{-1}(I\sigma) \in H^0(M, \wedge^2(T^{1,0}_I M))\) is **Holomorphic Poisson** on \(X = (M, I)\), i.e. in a holomorphic chart

\[
\sigma_I = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \left(\frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j} \right), \quad (\sigma_{ij} = -\sigma_{ji})
\]

with \(\sigma_{ij}(z)\) holomorphic, and

\[
[\sigma_I, \sigma_I] = 0 \iff \sum_{\ell=1}^{m} \left(\sum_{(ijk) \in S_3} \sigma_{i\ell}(z) \frac{\partial \sigma_{jk}}{\partial z_\ell}(z) \right) = 0.
\]

Corollary (Gualtieri–A.)

If \(X\) is complex surface of general type not covered by \(\mathbb{D} \times \mathbb{D}\), then

\(\nexists\) non-trivial GK structures.
Generalized Kähler geometry
(after Gates–Hull–Rocek, Hitchin, Gualtieri)

Some basic open problems
Let $X = (M^{2m}, I)$ be a compact complex manifold and $\sigma_I \neq 0$ is a holomorphic Poisson structure.

- Is there a non-trivial GK structure (g, I, J, b) with
 $\sigma = (IJ - JI)g^{-1} = \text{Re}(\sigma_I)$?
 True if $m = 2$ (Goto) or if (X, σ_I) is a toric variety (Boulanger).

- If (X, σ_I) admits a compatible GK structure does $X = (M, I)$ admit a Kähler metric?
 True if $m = 2$ (Gauduchon–Grantcharov–A., Gualtieri–A.)

- Describe the GK geometry of (X, σ_I) in a similar way as we described the Kähler geometry of a CY manifold.
Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure \((g, I, J, b)\) on \(M^{2m}\) is called **non-degenerate** if the holomorphic Poisson structure

\[
\sigma_I = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}
\]

is non-degenerate, i.e. \(\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0\)
Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure \((g, I, J, b)\) on \(M^{2m}\) is called **non-degenerate** if the holomorphic Poisson structure

\[
\sigma_I = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}
\]

is non-degenerate, i.e. \(\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0\) \(\iff m = 2n\)
Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure \((g, I, J, b)\) on \(M^{2m}\) is called **non-degenerate** if the holomorphic Poisson structure

\[
\sigma_I = \sigma - \sqrt{-1} (I \sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}
\]

is non-degenerate, i.e. \(\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0\) \(\iff m = 2n\)

\[\iff \sigma_I : T^*_X \cong T_X\text{ where } X = (M, I);\]
Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure \((g, I, J, b)\) on \(M^{2m}\) is called **non-degenerate** if the holomorphic Poisson structure

\[
\sigma_I = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}
\]

is non-degenerate, i.e. \(\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0 \Rightarrow m = 2n\)

- \(\iff \sigma_I : T_X^* \cong T_X \) where \(X = (M, I)\);
- \(\iff \sigma : T_M^* \cong T_M \).
Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$
\sigma_I = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}
$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0 \iff m = 2n$

- $\Leftrightarrow \sigma_I : T^*_X \cong T_X$ where $X = (M, I)$;
- $\Leftrightarrow \sigma : T^*_M \cong T_M$;
- $\Leftrightarrow \sigma_J : T^*_Y \cong T_Y$ where $Y = (M, J)$.
Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure \((g, I, J, b)\) on \(M^{2m}\) is called **non-degenerate** if the holomorphic Poisson structure

\[
\sigma_I = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}
\]

is non-degenerate, i.e. \(\text{det}_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0\)

- \(\iff \Omega_I = \sigma_I^{-1}\) is closed and non-degenerate \((2, 0)\)-form on \(X\),
- \(\iff \Omega = \sigma^{-1} = \text{Re}(\Omega_I)\) a closed and non-degenerate real \(2\)-form on \(M\),
- \(\iff \Omega_J = \sigma_J^{-1}\) is closed and non-degenerate \((2, 0)\)-form on \(Y\).
Non-degenerate GK structures: revisited

Lemma (Reduction of non-degenerate GK structures)

On M^{4n} we have a bijection

$$\{\text{non-degenerate GK structures}\} \longleftrightarrow \{\(\Omega_I, \Omega_J\)\}$$

where Ω_I, Ω_J are closed complex-valued 2-forms satisfying

1. $\text{Re}(\Omega_I) = \text{Re}(\Omega_J) = \Omega$ is a real symplectic form;
2. $\text{Im}(\Omega_I) = \Omega \circ I$, $\text{Im}(\Omega_J) = \Omega \circ J$ for I, J integrable almost complex structures;
3. $\omega_I := -2\left(\text{Im}(\Omega_J)\right)^{1,1}_I > 0 \ (g = -\omega_I \circ I)$.

Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A **holomorphic symplectic** manifold is a smooth, compact, complex \(m = 2n \) dimensional manifold \(X^{2n} = (M^{4n}, I) \) which admits a closed non-degenerate \((2, 0)\)-form \(\Omega_I \).
Definition (holomorphic symplectic manifold)

A **holomorphic symplectic** manifold is a smooth, compact, complex $m = 2n$ dimensional manifold $X^{2n} = (M^{4n}, I)$ which admits a closed non-degenerate $(2, 0)$-form Ω_I.

In a holomorphic chart:

$$\Omega_I = \frac{1}{2} \sum_{i,j=1}^{2n} \omega_{ij}(z) dz_i \wedge dz_j, \quad (\omega_{ij} = -\omega_{ji})$$

with $\omega_{ij}(z)$ holomorphic functions, s.t. $\det_{\mathbb{C}}(\omega_{ij}(z)) \neq 0$ and

$$\sum_{(ijk) \in S_3} \frac{\partial \omega_{ij}}{\partial z_k}(z) = 0.$$
Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)
A \textbf{holomorphic symplectic} manifold is a smooth, compact, complex $m = 2n$ dimensional manifold $X^{2n} = (M^{4n}, I)$ which admits a closed non-degenerate $(2, 0)$-form Ω_I.

Fact
If (X, Ω_I) is holomorphic symplectic then

\[
\Theta := (\Omega_I)^n = \left(\det_{\mathbb{C}}(\omega_{ij}(z)) \right)^{\frac{1}{2}} dz_1 \wedge \cdots \wedge dz_{2n}
\]

trivializes K_X, i.e. X is CY if it admits a Kähler metric.
Non-degenerate GK structures: Examples

Suppose $X = (M, I)$ is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric g_{CY} on X is hyper-Kähler, i.e. g_{CY} is Kähler with respect to 3 complex structures (I, J, K) satisfying the quaternion relations, and

$$\Omega_I = \lambda(\omega_J + \sqrt{-1}\omega_K), \lambda \in \mathbb{C}^\times,$$

where $\omega_I, \omega_J, \omega_K$ are the Kähler forms.
Non-degenerate GK structures: Examples

Suppose $X = (M, I)$ is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric g_{CY} on X is hyper-Kähler, i.e. g_{CY} is Kähler with respect to 3 complex structures (I, J, K) satisfying the quaternion relations, and

$$\Omega_I = \lambda(\omega_J + \sqrt{-1}\omega_K), \quad \lambda \in \mathbb{C}^\times,$$

where $\omega_I, \omega_J, \omega_K$ are the Kähler forms.

For $\Omega_I := \frac{1}{2}(-\omega_K + \sqrt{-1}\omega_J), \Omega_J := \frac{1}{2}(-\omega_K - \sqrt{-1}\omega_I)$ we have

1. $\text{Re}(\Omega_I) = \text{Re}(\Omega_J) = \Omega (= -\frac{1}{2}\omega_K)$;

2. $\text{Im}(\Omega_I) = \Omega \circ I, \quad \text{Im}(\Omega_J) = \Omega \circ J$ for I, J integrable almost complex structures;

3. $-2\left(\text{Im}(\Omega_J)\right)^{1,1} = \omega_I > 0$.
Non-degenerate GK structures: Examples

Suppose $X = (M, I)$ is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric g_{CY} on X is hyper-Kähler, i.e. g_{CY} is Kähler with respect to 3 complex structures (I, J, K) satisfying the quaternion relations, and

$$\Omega_I = \lambda(\omega_J + \sqrt{-1}\omega_K), \lambda \in \mathbb{C}^\times,$$

where $\omega_I, \omega_J, \omega_K$ are the Kähler forms.

Example

If $(M^{4n}, g_{CY}, I, J, K)$ is a hyper-Kähler manifold, then

$$\Omega_I := \frac{1}{2}(-\omega_K + \sqrt{-1}\omega_J), \Omega_J := \frac{1}{2}(-\omega_K - \sqrt{-1}\omega_I)$$

defines a non-degenerate GK structure on M with $g = g_{CY}$.
Non-degenerate GK structures: Examples

Lemma (Joyce’s deformation)

(M, Ω_I, Ω_J) compact non-degenerate GK mfd,
$\Omega = \text{Re}(\Omega_I) = \text{Re}(\Omega_J)$ a real symplectic form.

- $f \in C^\infty(M)$ gives rise to a Hamiltonian vector field
 $X_f = \Omega^{-1}(df)$ whose flow ϕ^f_t satisfy $(\phi^f_t)^*\Omega = \Omega$.

Example

If $(M, g_{\text{CY}}, I, J, K)$ is a hyper-Kähler manifold, then it admits
many non-Kähler GK metrics.
Non-degenerate GK structures: Examples

Lemma (Joyce’s deformation)

\((M, \Omega_I, \Omega_J)\) compact non-degenerate GK mfd,
\(\Omega = \text{Re}(\Omega_I) = \text{Re}(\Omega_J)\) a real symplectic form.

- \(f \in C^\infty(M)\) gives rise to a Hamiltonian vector field
 \(X_f = \Omega^{-1}(df)\) whose flow \(\phi_t^f\) satisfy
 \((\phi_t^f)^* \Omega = \Omega\).

\(\Rightarrow\) \((\Omega_I, \Omega_{J_t} := (\phi_t^f)^*(\Omega_J))\) satisfy the conditions (1), (2), (3)
 for \(|t| < \varepsilon\).
Non-degenerate GK structures: Examples

Lemma (Joyce’s deformation)

\((M, \Omega_I, \Omega_J)\) compact non-degenerate GK mfd,
\(\Omega = \text{Re}(\Omega_I) = \text{Re}(\Omega_J)\) a real symplectic form.

- \(f \in C^\infty(M)\) gives rise to a Hamiltonian vector field
 \(X_f = \Omega^{-1}(df)\) whose flow \(\phi_t^f\) satisfy \((\phi_t^f)^* \Omega = \Omega\).

- \(\Omega_I, \Omega_{J_t} := (\phi_t^f)^*(\Omega_J)\) satisfy the conditions (1), (2), (3) for \(|t| < \varepsilon\).

Example

If \((M^{4n}, g_{\text{CY}}, I, J, K)\) is a hyper-Kähler manifold, then it admits many non-Kähler GK metrics.
Non-degenerate GK structures: Conceptual picture

$(M^{4n}, \Omega_I, \Omega_J)$ a compact non-degenerate GK mfd,

$\Omega = \text{Re}(\Omega_I) = \text{Re}(\Omega_J)$, $G = \text{Ham}(M, \Omega) = \left\langle \phi^f, f \in C^\infty(M) \right\rangle$ the group of Hamiltonian diffeomorphisms
Non-degenerate GK structures: Conceptual picture

\((M^{4n}, \Omega_I, \Omega_J)\) a compact non-degenerate GK mfd,
\(\Omega = \text{Re}(\Omega_I) = \text{Re}(\Omega_J), \ G = \text{Ham}(M, \Omega) = \left\langle \phi^f, f \in C^\infty(M) \right\rangle\) the group of Hamiltonian diffeomorphisms

- \(G \times G\) acts on \((\Omega_I, \Omega_J)\) preserving (1) and (2) and \textbf{locally} (3):

\[
K_{(\Omega_I, \Omega_J)}^c := \left\{ (\phi^*(\Omega_I), \psi^*(\Omega_J)), (\phi, \psi) \in G \times G :
\begin{align*}
(\phi^*(\Omega_I), \psi^*(\Omega_J)) &\text{ satisfy } (3)
\end{align*}
\right\}.
\]
Non-degenerate GK structures: Conceptual picture

\((M^{4n}, \Omega_I, \Omega_J)\) a compact non-degenerate GK mfd,
\(\Omega = \text{Re}(\Omega_I) = \text{Re}(\Omega_J)\), \(G = \text{Ham}(M, \Omega) = \left\langle \phi^f, f \in C^\infty(M) \right\rangle\) the group of Hamiltonian diffeomorphisms

- \(G \times G\) acts on \((\Omega_I, \Omega_J)\) preserving (1) and (2) and \textbf{locally} (3):

\[
K^c_{(\Omega_I, \Omega_J)} := \left\{ (\phi^*(\Omega_I), \psi^*(\Omega_J)), (\phi, \psi) \in G \times G : \right. \\
\left. (\phi^*(\Omega_I), \psi^*(\Omega_J)) \text{ satisfy } (3) \right\}.
\]

- \(G_d = \{(\phi, \phi) \in G \times G : \phi \in G\}\) acts \textbf{globally} on \(K^c_{(\Omega_I, \Omega_J)}\) and

\[
K_{(\Omega_I, \Omega_J)} := K^c_{(\Omega_I, \Omega_J)}/G_d \approx \left\{ (\Omega_I, \phi^*(\Omega_J)) : (\Omega_I, \phi^*(\Omega_J)) \text{ satisfies } (3) \right\}.
\]
Non-degenerate GK structures: Conceptual picture

Theorem 1 (Streets–A.)

$K^c_{(\Omega_I, \Omega_J)}$ has a formal symplectic structure Ω such that G_d acts with moment map

$$\mu(\Omega_{I'}, \Omega_{J'}) = \left(\text{Im}(\Omega_{I'} - \Omega_{J'})\right)^{2n} - \lambda \left(\text{Im}(\Omega_{I'} + \Omega_{J'})\right)^{2n},$$

where $\lambda := \frac{\int_M (\Omega_I - \Omega_J)^{2n}}{\int_M (\Omega_I + \Omega_J)^{2n}}$ is a topological constant.
Non-degenerate GK structures: Conceptual picture

Conjecture (GIT package)

$K_{(\Omega_I, \Omega_J)}^c$ admits a unique up to the action of G_d pair (Ω_I', Ω_J') such that

$$
\mu(\Omega_I', \Omega_J') = \left(\text{Im}(\Omega_I' - \Omega_J') \right)^{2n} - \lambda \left(\text{Im}(\Omega_I' + \Omega_J') \right)^{2n} = 0
$$
Non-degenerate GK structures: Conceptual picture

Conjecture (GIT package)

$K^c_{(\Omega_I, \Omega_J)}$ admits a unique up to the action of G_d pair $(\Omega_{I'}, \Omega_{J'})$ such that

\[\mu(\Omega_{I'}, \Omega_{J'}) = \left(\text{Im}(\Omega_{I'} - \Omega_{J'}) \right)^{2n} - \lambda \left(\text{Im}(\Omega_{I'} + \Omega_{J'}) \right)^{2n} = 0 \]

Equivalently, there exists a unique non-degenerate GK structure $(\Omega_I, \phi^*(\Omega_J)) \in K_{(\Omega_I, \Omega_J)}$ ($\phi \in \text{Ham}(M, \Omega)$) such that

\[\Phi := \frac{\left(\text{Im}(\Omega_I - \Omega_{J'}) \right)^{2n}}{\left(\text{Im}(\Omega_I + \Omega_{J'}) \right)^{2n}} = \lambda. \]
Non-degenerate GK structures: Geometric picture

Lemma (Streets–A.)

Let (Ω_I, Ω_J) correspond to the GK structure (g, I, J, b) and

$$\Phi = \frac{\left(\text{Im}(\Omega_I - \Omega_J)\right)^{2n}}{\left(\text{Im}(\Omega_I + \Omega_J)\right)^{2n}}.$$

Then $\rho^{B,I} = -\sqrt{-1} \partial_J \bar{\partial}_J \Phi$ and $\rho^{B,J} = -\sqrt{-1} \partial_I \bar{\partial}_I \Phi$ are the Ricci forms of the Bismut connections $\nabla^{B,I}$ and $\nabla^{B,J}$ of (g, I) and (g, J).
Non-degenerate GK structures: Geometric picture

Lemma (Streets–A.)

Let \((\Omega_I, \Omega_J)\) correspond to the GK structure \((g, I, J, b)\) and

\[
\Phi = \frac{\left(\text{Im}(\Omega_I - \Omega_J)\right)^{2n}}{\left(\text{Im}(\Omega_I + \Omega_J)\right)^{2n}}.
\]

Then \(\rho^{B,I} = -\sqrt{-1} \partial J \bar{\partial} J \Phi\) and \(\rho^{B,J} = -\sqrt{-1} \partial I \bar{\partial} I \Phi\) are the Ricci forms of the Bismut connections \(\nabla^{B,I}\) and \(\nabla^{B,J}\) of \((g, I)\) and \((g, J)\). If \(M\) is compact, \(\Phi = \lambda \iff \rho^{B,I} = \rho^{B,J} = 0\).
Non-degenerate GK structures: Geometric picture

Corollary (Alexandrov–Ivanov, Ivanov–Papadopoulos)

A compact non-degenerate GK mfd \((M, \Omega_I, \Omega_J)\) satisfies \(\Phi = \lambda \iff (\Omega_I, \Omega_J)\) is hyper-Kähler \((g = g_{\text{CY}})\).
Non-degenerate GK structures:
Geometric picture

Corollary (Alexandrov–Ivanov, Ivanov–Papadopoulos)

A compact non-degenerate GK mfd \((M, \Omega_I, \Omega_J)\) satisfies
\(\Phi = \lambda \iff (\Omega_I, \Omega_J)\) is hyper-Kähler \((g = g_{\text{CY}})\).

Conjecture (Calabi–Yau Conjecture for non-degenerate GK structures)

Let \((M, \Omega_I, \Omega_J)\) be a compact non-degenerate GK manifold. Then
\(\exists! (\Omega_I, \phi^*(\Omega_J))\) \((\phi \in \text{Ham}(\Omega))\) which corresponds to a
hyper-Kähler structure.
Non-degenerate GK structures: Geometric picture

Corollary (Alexandrov–Ivanov, Ivanov–Papadopoulos)

A compact non-degenerate GK mfd (M,Ω_I,Ω_J) satisfies
\[\Phi = \lambda \iff (\Omega_I,\Omega_J) \text{ is hyper-Kähler } (g = g_{CY}). \]

Conjecture (Calabi–Yau Conjecture for non-degenerate GK structures)

Let (M,Ω_I,Ω_J) be a compact non-degenerate GK manifold. Then
\[\exists! (\Omega_I,\phi^*(\Omega_J)) \ (\phi \in \text{Ham}(\Omega)) \text{ which corresponds to a hyper-Kähler structure.} \]
\[\iff \text{each non-degenerate GK structure is obtained from the Joyce construction and } K_{(\Omega_I,\Omega_J)} \text{ is a (non-abelian) analog of a Kähler class.} \]
Non-degenerate GK structures: Proving the conjecture

Recall:

Theorem (Cao)

Let (X^m, Θ) be a CY manifold. Then, for any Kähler metric ω_0 the solution to the Kähler-Ricci flow

$$\frac{\partial}{\partial t} \omega_t = -2\rho_{\omega_t}, \quad (\omega_t)|_{t=0} = \omega_0$$

exists for all $t \in [0, +\infty)$, $\omega_t \in K[\omega_0]$ and $\lim_{t \to \infty} \omega_t = \omega_{CY}$ in C^∞.
Recall:

Theorem (Cao)

Let (X^m, Θ) be a CY manifold. Then, for any Kähler metric ω_0 the solution to the Kähler-Ricci flow

\[
\frac{\partial}{\partial t} \omega_t = -2\rho_\omega, \quad (\omega_t)|_{t=0} = \omega_0
\]

exists for all $t \in [0, +\infty)$, $\omega_t \in K[\omega_0]$ and $\lim_{t \to \infty} \omega_t = \omega_{CY}$ in C^∞.

Main tool is the reduction to a parabolic Monge-Ampère PDE:

\[
\frac{\partial}{\partial t} \varphi_t = 2 \log \left(\frac{\omega_m^m}{\Theta \wedge \Theta} \right) = MA(\varphi_t), \quad \varphi_t \in K[\omega_0].
\]
Non-degenerate GK structures: Proving the conjecture

Theorem (Streets–Tian)

Let (M, g, I, J, b) be a compact GK manifold. Then, the solution $\omega_t = g_t I$ to the generalized Kähler Ricci flow

$$\frac{\partial}{\partial t} \omega_t = -2(\rho_{\omega_t}^B, I)^{1,1}, \quad (\omega_t)|_{t=0} = \omega_I (= gI)$$

exists for $t \in [0, T_{\text{max}})$ and $\exists (J_t, b_t)$ s.t. (g_t, I, J_t, b_t) is GK.
Non-degenerate GK structures: Proving the conjecture

Theorem (Streets–Tian)

Let \((M, g, l, J, b)\) be a compact GK manifold. Then, the solution \(\omega_t = g_t l\) to the generalized Kähler Ricci flow

\[
\frac{\partial}{\partial t} \omega_t = -2(\rho^{B,L}_{\omega_t})_{1,1}^{1,1}, \quad (\omega_t)|_{t=0} = \omega_l (= g_l)
\]

exists for \(t \in [0, T_{\text{max}})\) and \(\exists (J_t, b_t)\) s.t. \((g_t, l, J_t, b_t)\) is GK.

This is a parabolic system (not a single PDE) so there is no \(C^\alpha\) (deGiorgi–Nash–Moser/Krylov–Safonov) estimate nor \(C^{2,\alpha}\) (Evans–Krylov) estimate...
Non-degenerate GK structures:
Proving the conjecture

Theorem 2 (Streets–A.)

Let (M, Ω_I, Ω_J) be a compact non-degenerate GK mdf and (g_t, I, J_t, b_t) the solution of the GK Ricci flow starting from (Ω_I, Ω_J). Then (g_t, I, J_t, b_t) corresponds to $(\Omega_I, \Omega_{J_t}) \in K_{(\Omega_I, \Omega_J)}$ where $\Omega_{J_t} = \phi^*_t(\Omega_J)$ for ϕ_t being the hamiltonian isotopy generated by the momentum Φ_t.
Non-degenerate GK structures: Proving the conjecture

Theorem 2 (Streets–A.)

Let \((M, \Omega_I, \Omega_J)\) be a compact non-degenerate GK mdf and \((g_t, I, J_t, b_t)\) the solution of the GK Ricci flow starting from \((\Omega_I, \Omega_J)\). Then \((g_t, I, J_t, b_t)\) corresponds to \((\Omega_t, \Omega_J) \in K(\Omega_I, \Omega_J)\) where \(\Omega_J = \phi_t^*(\Omega_J)\) for \(\phi_t\) being the hamiltonian isotopy generated by the momentum \(\Phi_t\). Furthermore,

\[
\frac{\partial}{\partial t} \Phi_t = -\Delta_{g_t} \Phi_t
\]
Non-degenerate GK structures:
Proving the conjecture

Using the maximum principle for

$$\frac{\partial}{\partial t} \Phi_t = -\Delta_{g_t} \Phi_t$$

Corollary (New a priori estimates)

Let (M, Ω_I, Ω_J) be a compact non-degenerate GK mdf and $(g_t, I_t, J_t, b_t), t \in [0, T_{\text{max}})$ the solution of the GK Ricci flow starting from (Ω_I, Ω_J). Then

$$\sup_{M \times [0, T_{\text{max}})} |\Phi_t| \leq \sup_{M \times \{0\}} |\Phi_0|$$

$$\sup_{M \times \{t\}} |\nabla \Phi_t|^2 \leq t^{-1} \left(\sup_{M \times \{0\}} |\Phi_0|^2 \right)$$
Non-degenerate GK structures:
Proving the conjecture

Using the maximum principle for

\[
\frac{\partial}{\partial t} \Phi_t = -\Delta_{g_t} \Phi_t
\]

Corollary (New a priori estimates)

Let \((M, \Omega_I, \Omega_J)\) be a compact non-degenerate GK mdf and
\((g_t, I, J_t, b_t), t \in [0, T_{\text{max}})\) the solution of the GK Ricci flow
starting from \((\Omega_I, \Omega_J)\). Then

\[
\sup_{M \times [0, T_{\text{max}}]} |\Phi_t| \leq \sup_{M \times \{0\}} |\Phi_0| \Rightarrow \omega_t^{2n} \leq C \omega_0^{2n}, \ |b_t|^2 \leq C
\]

\[
\sup_{M \times \{t\}} |\nabla \Phi_t|^2 \leq t^{-1} \left(\sup_{M \times \{0\}} |\Phi_0|^2 \right) \Rightarrow \lim_{t \to \infty} \Phi_t = \lambda
\]
Non-degenerate GK structures:
Using the a priori estimates

Theorem 3 (Streets–A.)

Let \((M, g_0, I, J_0, b_0)\) be a compact non-degenerate GK mdf and \((g_t, I, J_t, b_t), t \in [0, T_{\text{max}})\) the solution of the GK Ricci flow. Suppose there exits a uniform constant \(C > 0\) s.t.

\[
\frac{1}{C} g_0 \leq g_t \leq C g_0,
\]

Then \(T_{\text{max}} = \infty\), \(\lim_{t \to \infty} g_t = g_\infty\) in \(C^\infty\) and \((g_\infty, I, J_\infty, b_\infty)\) is Hyper-Kähler with \(J_\infty = \phi^*_\infty (J_0), \phi_\infty \in \text{Ham}(M, \Omega)\).
Non-degenerate GK structures:
Using the a priori estimates

Theorem 3 (Streets–A.)

Let \((M, g_0, I, J_0, b_0)\) be a compact non-degenerate GK mdf and \((g_t, I, J_t, b_t), t \in [0, T_{\text{max}})\) the solution of the GK Ricci flow. Suppose there exists a uniform constant \(C > 0\) s.t.

\[
\frac{1}{C} g_0 \leq g_t \leq C g_0,
\]

Then \(T_{\text{max}} = \infty\), \(\lim_{t \to \infty} g_t = g_\infty\) in \(C^\infty\) and \((g_\infty, I, J_\infty, b_\infty)\) is Hyper-Kähler with \(J_\infty = \phi_\infty^*(J_0), \phi_\infty \in \text{Ham}(M, \Omega)\).
⇒ the Calabi–Yau conjecture for non-degenerate GK holds true.
Non-degenerate GK structures: Using the a priori estimates

Theorem 4 (Streets–A.)

Let \((M, g_0, I, J_0, b_0)\) be a compact non-degenerate GK mdf and \((g_t, I, J_t, b_t), t \in [0, T_{\text{max}})\) the solution of the GK Ricci flow. Suppose \((M, I)\) is CY. Then there exists a constant \(C = C(T_{\text{max}}) > 0\) s.t.

\[
\frac{1}{C} g_0 \leq g_t \leq C g_0,
\]
Non-degenerate GK structures: Using the a priori estimates

Theorem 4 (Streets–A.)

Let \((M, g_0, I, J_0, b_0)\) be a compact non-degenerate GK mdf and \((g_t, I, J_t, b_t), t \in [0, T_{\text{max}})\) the solution of the GK Ricci flow. Suppose \((M, I)\) is CY. Then there exists a constant \(C = C(T_{\text{max}}) > 0\) s.t.

\[
\frac{1}{C} g_0 \leq g_t \leq C g_0,
\]

\[\Rightarrow T_{\text{max}} = \infty, \lim_{t \to \infty} \omega_t = \omega_\infty \text{ where } \omega_\infty \text{ is a closed } (1, 1) \text{ current on } (M, I).\]
THANK YOU !