The Generalized Kähler Geometry of Holomorphic Symplectic Manifolds

Vestislav Apostolov

MDS Sofia, July, 2017

Plan of the talk

1. The Calabi program and Calabi-Yau manifolds

- E. Calabi, On Kähler manifolds with vanishing canonical class, Princeton University Press, Mathematical Series, 1957;
- Y.-S. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. National Acad. Sci. U.S. A., 1977.

2. Generalized Kähler geometry

- S. Gates, J. Hull, M. Rocek, Twisted multiplets and new supersymmetric nonlinear σ-models. Nuclear Phys. B, 1984;
- N. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math., 2003;
- M. Gualtieri, *Generalized Kähler geometry*, Comm. Math. Phys., 2014.
- 3. Calabi-Yau conjecture in generalized Kähler geometry joint work with Jeff Streets (UCI): arXiv:1703.08650.

Definition (Calabi-Yau manifold)

A compact complex *m*-dimensional manifold $X^m_{\mathbb{C}}=(M^{2m}_{\mathbb{R}},J)$ is **Calabi–Yau** if

Definition (Calabi-Yau manifold)

A compact complex *m*-dimensional manifold $X^m_{\mathbb{C}}=(M^{2m}_{\mathbb{R}},J)$ is **Calabi-Yau** if

• X admits a Kähler metric ω_0 .

Definition (Calabi-Yau manifold)

A compact complex *m*-dimensional manifold $X^m_{\mathbb{C}}=(M^{2m}_{\mathbb{R}},J)$ is **Calabi-Yau** if

• X admits a Kähler metric ω_0 . In a holomorphic chart

$$\omega_0 = \sqrt{-1}\partial\bar{\partial}f := \sqrt{-1}\sum_{i,j=1}^m \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}\right)(z)dz_i \wedge d\bar{z}_j$$

with
$$\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_i}\right)(z) > 0$$
,

Definition (Calabi-Yau manifold)

A compact complex *m*-dimensional manifold $X^m_{\mathbb{C}}=(M^{2m}_{\mathbb{R}},J)$ is **Calabi–Yau** if

• X admits a Kähler metric ω_0 . In a holomorphic chart

$$\omega_0 = \sqrt{-1}\partial\bar{\partial}f := \sqrt{-1}\sum_{i,j=1}^m \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}\right)(z)dz_i \wedge d\bar{z}_j$$

with
$$\left(\frac{\partial^2 f}{\partial z_i \partial \overline{z}_j}\right)(z) > 0$$
, and

•
$$K_X = \mathcal{O}_K$$

Definition (Calabi-Yau manifold)

A compact complex *m*-dimensional manifold $X^m_{\mathbb{C}}=(M^{2m}_{\mathbb{R}},J)$ is **Calabi–Yau** if

• X admits a Kähler metric ω_0 . In a holomorphic chart

$$\omega_0 = \sqrt{-1}\partial\bar{\partial}f := \sqrt{-1}\sum_{i,j=1}^m \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}\right)(z)dz_i \wedge d\bar{z}_j$$

with
$$\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}\right)(z) > 0$$
, and

• $K_X = \mathcal{O}_K$ i.e. X admits a nowhere-vanishing holomorphic section $\Theta \in H^0(K_X) = H^0(X, \Omega^{m,0}(X))$.

Definition (Calabi-Yau manifold)

A compact complex *m*-dimensional manifold $X^m_{\mathbb{C}}=(M^{2m}_{\mathbb{R}},J)$ is **Calabi-Yau** if

• X admits a Kähler metric ω_0 . In a holomorphic chart

$$\omega_0 = \sqrt{-1}\partial\bar{\partial}f := \sqrt{-1}\sum_{i,j=1}^m \left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}\right)(z)dz_i \wedge d\bar{z}_j$$

with
$$\left(\frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}\right)(z) > 0$$
, and

• $K_X = \mathcal{O}_K$ i.e. X admits a nowhere-vanishing holomorphic section $\Theta \in H^0(K_X) = H^0(X, \Omega^{m,0}(X))$.

$$\Theta = \theta(z)dz_1 \wedge \cdots \wedge dz_m$$

with $\theta(z)$ holomorphic and $\theta(z) \neq 0$.

Examples of CY manifolds

• (tori)
$$X^m=\mathbb{C}^m/(\mathbb{Z}^m\oplus\sqrt{-1}\mathbb{Z}^m)=T^m_\mathbb{C}$$
 with

$$\omega_0 = \frac{\sqrt{-1}}{2} \sum_{j=1}^m dz_j \wedge d\bar{z}_j, \quad \Theta = dz_1 \wedge \cdots \wedge dz_m.$$

Examples of CY manifolds

• (tori) $X^m=\mathbb{C}^m/(\mathbb{Z}^m\oplus\sqrt{-1}\mathbb{Z}^m)=T^m_\mathbb{C}$ with

$$\omega_0 = \frac{\sqrt{-1}}{2} \sum_{j=1}^m dz_j \wedge d\bar{z}_j, \quad \Theta = dz_1 \wedge \cdots \wedge dz_m.$$

• $X^m \subset \mathbb{P}^{m+1}$ of degree m+2 is CY (X is projective with $K_X = \mathcal{O}$).

Examples of CY manifolds

• (tori) $X^m=\mathbb{C}^m/(\mathbb{Z}^m\oplus\sqrt{-1}\mathbb{Z}^m)=T^m_\mathbb{C}$ with

$$\omega_0 = \frac{\sqrt{-1}}{2} \sum_{j=1}^m dz_j \wedge d\bar{z}_j, \quad \Theta = dz_1 \wedge \cdots \wedge dz_m.$$

- $X^m \subset \mathbb{P}^{m+1}$ of degree m+2 is CY (X is projective with $K_X = \mathcal{O}$).
- Deforming the complex structure in the above examples leads to CY manifolds: each elliptic complex curve and each K3 complex surface is CY.

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$$[\omega_{\varphi}] = [\omega_0] = \alpha \in H^2_{\mathrm{dR}}(X, \mathbb{R}).$$

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$$[\omega_{\varphi}] = [\omega_0] = \alpha \in H^2_{\mathrm{dR}}(X, \mathbb{R}).$$

Example $(\dim_{\mathbb{C}} X = 1)$

Any riemannian metric is determined in a holomorphic chart by $\omega_0 = \sqrt{-1}h(z)dz \wedge d\bar{z}, h > 0.$

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$$[\omega_{\varphi}] = [\omega_0] = \alpha \in H^2_{\mathrm{dR}}(X, \mathbb{R}).$$

Example $(\dim_{\mathbb{C}} X = 1)$

Any riemannian metric is determined in a holomorphic chart by $\omega_0 = \sqrt{-1}h(z)dz \wedge d\bar{z}, h > 0$. Any other Riemannian metric is written as $\omega = e^{\psi}\omega_0, \quad \psi \in C^{\infty}(X)$.

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

$$[\omega_{\varphi}] = [\omega_0] = \alpha \in H^2_{\mathrm{dR}}(X, \mathbb{R}).$$

Example $(\dim_{\mathbb{C}} X = 1)$

Any riemannian metric is determined in a holomorphic chart by $\omega_0 = \sqrt{-1}h(z)dz \wedge d\bar{z}, h > 0$. Any other Riemannian metric is written as $\omega = e^{\psi}\omega_0, \quad \psi \in C^{\infty}(X)$.

$$\omega = \omega_0 + \sqrt{-1}\partialar{\partial} \varphi \Longleftrightarrow \Delta_{\omega_0} \varphi = (1 - e^{\psi}) \Longleftrightarrow \int_{\mathbf{Y}} \omega = \int_{\mathbf{Y}} \omega_0.$$

Definition (Kähler class)

A **Kähler class** of Kähler metrics on X is the space of smooth functions

$$K_{[\omega_0]} := \{ \varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega_0 + \sqrt{-1}\partial \bar{\partial} \varphi > 0 \},$$

where ω_0 is a given (reference) Kähler metric.

Example $(\dim_{\mathbb{C}} X = 1)$

Any riemannian metric is determined in a holomorphic chart by $\omega_0 = \sqrt{-1}h(z)dz \wedge d\bar{z}, h > 0$. Any other Riemannian metric is written as $\omega = e^{\psi}\omega_0, \ \psi \in C^{\infty}(X)$.

$$K_{[\omega_0]} = \{\text{volume normalized conformal class on } X\}.$$

Definition (Ricci form)

The **Ricci form** of a Kähler metric ω on X is

$$\rho_{\omega} := \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\Theta \wedge \bar{\Theta}}{\omega^m} \right)$$

where Θ is any local holomorphic (m, 0)-form.

Definition (Ricci form)

The **Ricci form** of a Kähler metric ω on X is

$$\rho_{\omega} := \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\Theta \wedge \bar{\Theta}}{\omega^m} \right)$$

where Θ is any local holomorphic (m,0)-form.

Example $(\dim_{\mathbb{C}} X = 1)$

Any riemannian metric is determined in a holomorphic chart by $\omega = \sqrt{-1}h(z)dz \wedge d\bar{z}, h > 0$. For $\Theta = dz$ we get

$$\rho_{\omega} = K(z)\omega$$

where $K(z) = -\frac{1}{h(z)}\Delta_0 \log h(z)$ is the Gauss curvature.

Definition (Ricci form)

The **Ricci form** of a Kähler metric ω on X is

$$\rho_{\omega} := \sqrt{-1}\partial\bar{\partial}\log\left(\frac{\Theta\wedge\bar{\Theta}}{\omega^m}\right)$$

where Θ is any local holomorphic (m,0)-form.

Theorem (Yau)

Let (X^m, Θ) be a CY manifold. Then, \exists unique

$$\omega_{\rm CY} = \omega_0 + \sqrt{-1}\partial\bar{\partial}\varphi \in K_{[\omega_0]}$$

such that

$$\rho_{\omega_{\rm CY}} = 0$$

Definition (Ricci form)

The **Ricci form** of a Kähler metric ω on X is

$$\rho_{\omega} := \sqrt{-1}\partial\bar{\partial}\log\left(\frac{\Theta\wedge\bar{\Theta}}{\omega^m}\right)$$

where Θ is any local holomorphic (m,0)-form.

Theorem (Yau)

Let (X^m, Θ) be a CY manifold. Then, \exists unique

$$\omega_{\text{CY}} = \omega_0 + \sqrt{-1}\partial\bar{\partial}\varphi \in \mathcal{K}_{[\omega_0]}$$

such that

$$\rho_{\omega_{\text{CY}}} = 0 \iff (\omega_{\text{CY}})^{\wedge m} = \lambda(\Theta \wedge \bar{\Theta}), \lambda = \text{const.}$$

Definition (Kähler Ricci flow)

The **Kähler Ricci flow** starting from a Kähler metric ω_0 on X is any smooth family of Kähler metrics ω_t solving the geometric PDE

$$\frac{\partial}{\partial t}\omega_t = -2\rho_{\omega_t}, \ (\omega_t)_{|_{t=0}} = \omega_0.$$

Definition (Kähler Ricci flow)

The **Kähler Ricci flow** starting from a Kähler metric ω_0 on X is any smooth family of Kähler metrics ω_t solving the geometric PDE

$$\frac{\partial}{\partial t}\omega_t = -2\rho_{\omega_t}, \ (\omega_t)_{|_{t=0}} = \omega_0.$$

Theorem (Cao)

Let (X^m, Θ) be a CY manifold. Then, for any Kähler metric ω_0 the solution to the Kähler-Ricci flow exists for all $t \in [0, +\infty)$, $\omega_t \in K_{[\omega_0]}$ and $\lim_{t \to \infty} \omega_t = \omega_{\mathrm{CY}}$ in C^∞ .

The Kähler geometry of CY manifolds Summary: The Calabi Program

- The Kähler geometry is described in terms of Kähler classes K_{α} where $\alpha = [\omega_0] \in H^2_{\mathrm{dR}}(X,\mathbb{R}) \cap H^{1,1}(X,\mathbb{C})$ runs over the **Kähler cone**.
- (uniqueness) Each Kähler class K_{α} contains a unique canonical representative $\omega_{\text{CY},\alpha}$ and any other Kähler metric $\omega \in K_{\alpha}$ is written

$$\omega = \omega_{\text{CY},\alpha} + \sqrt{-1}\partial\bar{\partial}\varphi, \ \varphi \in C^{\infty}(X).$$

• (connectedness) The Kähler Ricci flow allows one to reach the canonical representative $\omega_{\text{CY},\alpha}$.

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) 2m-dimensional manifold $M_{\mathbb{R}}^{2m}$ is defined by the data (I, J, g, b) where:

• I and J are two complex structures on $M_{\mathbb{R}}^{2m}$;

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) 2m-dimensional manifold $M_{\mathbb{R}}^{2m}$ is defined by the data (I, J, g, b) where:

- I and J are two complex structures on $M_{\mathbb{R}}^{2m}$;
- g is a Riemannian metric compatible with I and J, i.e.

$$g(J\cdot,J\cdot)=g(I\cdot,I\cdot)=g(\cdot,\cdot).$$

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) 2m-dimensional manifold $M_{\mathbb{R}}^{2m}$ is defined by the data (I, J, g, b) where:

- I and J are two complex structures on $M_{\mathbb{R}}^{2m}$;
- g is a Riemannian metric compatible with I and J, i.e.

$$g(J\cdot,J\cdot)=g(I\cdot,I\cdot)=g(\cdot,\cdot).$$

b is a 2-form;

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Definition (GK structure)

A generalized Kähler structure (GK) on a (real) 2m-dimensional manifold $M_{\mathbb{R}}^{2m}$ is defined by the data (I, J, g, b) where:

- I and J are two complex structures on $M_{\mathbb{R}}^{2m}$;
- g is a Riemannian metric compatible with I and J, i.e.

$$g(J\cdot,J\cdot)=g(I\cdot,I\cdot)=g(\cdot,\cdot).$$

- b is a 2-form;
- a first order compatibility relation

$$\partial_I \omega_I = \sqrt{-1} \bar{\partial}_I (b_I^{2,0}), \quad \partial_J \omega_J = -\sqrt{-1} \bar{\partial}_J (b_I^{2,0}),$$

where $\omega_I = gI$, $\omega_J = gJ$ are the Kähler forms.

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Example (trivial)

 $X = (M^{2m}, I)$ a complex manifold and (g, ω_I) a Kähler metric. Then, letting J := -I, b := 0 we obtain a GK structure (g, I, J, b).

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Example (trivial)

 $X = (M^{2m}, I)$ a complex manifold and (g, ω_I) a Kähler metric. Then, letting J := -I, b := 0 we obtain a GK structure (g, I, J, b).

Problem

Are there non-trivial examples?

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for m=2; Hitchin for $m\geq 2$) Let (M^{2m},g,I,J,b) be GK and $\sigma:=(IJ-JI)g^{-1}\in\Gamma(\wedge^2TM)$. Then $\sigma_I:=\sigma-\sqrt{-1}(I\sigma)\in H^0(M,\wedge^2(T_I^{1,0}M))$ is **Holomorphic Poisson** on X=(M,I),

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for m=2; Hitchin for $m\geq 2$) Let (M^{2m},g,I,J,b) be GK and $\sigma:=(IJ-JI)g^{-1}\in \Gamma(\wedge^2TM)$. Then $\sigma_I:=\sigma-\sqrt{-1}(I\sigma)\in H^0(M,\wedge^2(T_I^{1,0}M))$ is **Holomorphic Poisson** on X=(M,I), i.e. in a holomorphic chart

$$\sigma_{I} = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \left(\frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}} \right), \ (\sigma_{ij} = -\sigma_{ji})$$

with $\sigma_{ij}(z)$ holomorphic, and

$$[\sigma_I, \sigma_I] = 0 \Leftrightarrow \sum_{\ell=1}^m \left(\sum_{(ijk) \in S_3} \sigma_{i\ell}(z) \frac{\partial \sigma_{jk}}{\partial z_\ell}(z) \right) = 0.$$

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Theorem (Gauduchon–Grantcharov–A. for m=2; Hitchin for $m\geq 2$)

Let (M^{2m}, g, I, J, b) be GK and $\sigma := (IJ - JI)g^{-1} \in \Gamma(\wedge^2 TM)$. Then $\sigma_I := \sigma - \sqrt{-1}(I\sigma) \in H^0(M, \wedge^2(T_I^{1,0}M))$ is **Holomorphic**

Poisson on X = (M, I), i.e. in a holomorphic chart

$$\sigma_{I} = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \left(\frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}} \right), \ (\sigma_{ij} = -\sigma_{ji})$$

with $\sigma_{ij}(z)$ holomorphic, and

$$[\sigma_I, \sigma_I] = 0 \Leftrightarrow \sum_{\ell=1}^m \left(\sum_{(jik) \in S_3} \sigma_{i\ell}(z) \frac{\partial \sigma_{jk}}{\partial z_\ell}(z) \right) = 0.$$

Corollary (Gualtieri-A.)

If X is complex surface of general type not covered by $\mathbb{D} \times \mathbb{D}$, then \mathbb{B} non-trivial GK structures.

(after Gates-Hull-Rocek, Hitchin, Gualtieri)

Some basic open problems

Let $X = (M^{2m}, I)$ be a compact complex manifold and $\sigma_I \neq 0$ is a holomorphic Poisson structure.

- Is there a non-trivial GK structure (g, I, J, b) with $\sigma = (IJ JI)g^{-1} = \text{Re}(\sigma_I)$? True if m = 2 (Goto) or if (X, σ_I) is a toric variety (Boulanger).
- If (X, σ_I) admits a compatible GK structure does X = (M, I) admit a Kähler metric?
 True if m = 2 (Gauduchon-Grantcharov-A., Gualtieri-A.)
- Describe the GK geometry of (X, σ_I) in a similar way as we described the Kähler geometry of a CY manifold.

Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$\sigma_{I} = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}}$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0$

Non-degenerate GK structures

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$\sigma_{I} = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}}$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0 \iff m = 2n$

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$\sigma_{I} = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}}$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0 \iff m = 2n$

•
$$\iff$$
 $\sigma_I : T_X^* \cong T_X$ where $X = (M, I)$;

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$\sigma_{I} = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}}$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0 \iff m = 2n$

- \iff $\sigma_I : T_X^* \cong T_X$ where X = (M, I);
- \iff $\sigma: T_M^* \cong T_M$;

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$\sigma_{I} = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^{m} \sigma_{ij}(z) \frac{\partial}{\partial z_{i}} \wedge \frac{\partial}{\partial z_{j}}$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0 \iff m = 2n$

- \iff $\sigma_I : T_X^* \cong T_X$ where X = (M, I);
- \iff $\sigma: T_M^* \cong T_M$;
- $\iff \sigma_I : T_V^* \cong T_Y \text{ where } Y = (M, J).$

Definition (Non-degenerate GK structure)

The GK structure (g, I, J, b) on M^{2m} is called **non-degenerate** if the holomorphic Poisson structure

$$\sigma_I = \sigma - \sqrt{-1}(I\sigma) = \frac{1}{2} \sum_{i,j=1}^m \sigma_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}$$

is non-degenerate, i.e. $\det_{\mathbb{C}}(\sigma_{ij}(z)) \neq 0$

- \iff $\Omega_I = \sigma_I^{-1}$ is closed and non-degenerate (2,0)-form on X,
- $\iff \Omega = \sigma^{-1} = \text{Re}(\Omega_I)$ a closed and non-degenerate real 2-form on M.
- 2-form on M, $\Longleftrightarrow \Omega_J = \sigma_J^{-1} \text{ is closed and non-degenerate (2,0)-form on } Y.$

Non-degenerate GK structures: revisited

Lemma (Reduction of non-degenerate GK structures) On M^{4n} we have a bijection

$$\{\text{non-degenerate GK structures}\} \longleftrightarrow \{(\Omega_I, \Omega_J)\}$$

where Ω_I, Ω_J are closed complex-valued 2-forms satisfying

- (1) $\operatorname{Re}(\Omega_I) = \operatorname{Re}(\Omega_J) = \Omega$ is a real symplectic form;
- (2) $\operatorname{Im}(\Omega_I) = \Omega \circ I$, $\operatorname{Im}(\Omega_J) = \Omega \circ J$ for I, J integrable almost complex structures;

(3)
$$\omega_I := -2 \Big(\operatorname{Im}(\Omega_J) \Big)_I^{1,1} > 0 \ (g = -\omega_I \circ I).$$

Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A **holomorphic symplectic** manifold is a smooth, compact, complex m = 2n dimensional manifold $X^{2n} = (M^{4n}, I)$ which admits a closed non-degenerate (2, 0)-form Ω_I .

Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A **holomorphic symplectic** manifold is a smooth, compact, complex m=2n dimensional manifold $X^{2n}=(M^{4n},I)$ which admits a closed non-degenerate (2,0)-form Ω_I .

In a holomorphic chart:

$$\Omega_I = \frac{1}{2} \sum_{i,j=1}^{2n} \omega_{ij}(z) dz_i \wedge dz_j, \quad (\omega_{ij} = -\omega_{ji})$$

with $\omega_{ij}(z)$ holomorphic functions, s.t. $\det_{\mathbb{C}}(\omega_{ij}(z)) \neq 0$ and

$$\sum_{(ijk)\in S_3} \frac{\partial \omega_{ij}}{\partial z_k}(z) = 0.$$

Holomorphic symplectic manifolds

Definition (holomorphic symplectic manifold)

A **holomorphic symplectic** manifold is a smooth, compact, complex m=2n dimensional manifold $X^{2n}=(M^{4n},I)$ which admits a closed non-degenerate (2,0)-form Ω_I .

Fact

If (X, Ω_I) is holomorphic symplectic then

$$\Theta := (\Omega_I)^{\wedge n} = \left(\det_{\mathbb{C}}(\omega_{ij}(z))\right)^{\frac{1}{2}} dz_1 \wedge \cdots \wedge dz_{2n}$$

trivializes K_X , i.e. X is CY if it admits a Kähler metric.

Suppose X = (M, I) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric g_{CY} on X is hyper-Kähler, i.e. g_{CY} is Kähler with respect to 3 complex structures (I,J,K) satisfying the quaternion relations, and

$$\Omega_I = \lambda(\omega_J + \sqrt{-1}\omega_K), \lambda \in \mathbb{C}^\times,$$

where $\omega_I, \omega_I, \omega_K$ are the Kähler forms.

Suppose X = (M, I) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi–Yau metric g_{CY} on X is hyper-Kähler, i.e. g_{CY} is Kähler with respect to 3 complex structures (I,J,K) satisfying the quaternion relations, and

$$\Omega_I = \lambda(\omega_J + \sqrt{-1}\omega_K), \lambda \in \mathbb{C}^{\times},$$

where $\omega_I, \omega_J, \omega_K$ are the Kähler forms.

For $\Omega_I := \frac{1}{2} \left(-\omega_K + \sqrt{-1}\omega_J \right), \Omega_J := \frac{1}{2} \left(-\omega_K - \sqrt{-1}\omega_I \right)$ we have

- (1) $\operatorname{Re}(\Omega_I) = \operatorname{Re}(\Omega_J) = \Omega \ (= -\frac{1}{2}\omega_K);$
- (2) $\operatorname{Im}(\Omega_I) = \Omega \circ I$, $\operatorname{Im}(\Omega_J) = \Omega \circ J$ for I, J integrable almost complex structures;

(3)
$$-2\left(\operatorname{Im}(\Omega_J)\right)_I^{1,1} = \omega_I > 0.$$

Suppose X = (M, I) is holomorphic symplectic and CY.

Fact (Bogomolov)

Any Calabi-Yau metric g_{CY} on X is hyper-Kähler, i.e. g_{CY} is Kähler with respect to 3 complex structures (I, J, K) satisfying the quaternion relations, and

$$\Omega_I = \lambda(\omega_J + \sqrt{-1}\omega_K), \lambda \in \mathbb{C}^{\times},$$

where $\omega_I, \omega_I, \omega_K$ are the Kähler forms.

Example

If
$$(M^{4n}, g_{\mathrm{CY}}, I, J, K)$$
 is a hyper-Kähler manifold, then
$$\Omega_I := \frac{1}{2} \big(-\omega_K + \sqrt{-1}\omega_J \big), \Omega_J := \frac{1}{2} \big(-\omega_K - \sqrt{-1}\omega_I \big)$$

defines a non-degenerate GK structure on M with $g = g_{CY}$.

Lemma (Joyce's deformation)

 (M, Ω_I, Ω_J) compact non-degenerate GK mfd, $\Omega = \operatorname{Re}(\Omega_I) = \operatorname{Re}(\Omega_J)$ a real symplectic form.

• $f \in C^{\infty}(M)$ gives rise to a Hamiltonian vector field $X_f = \Omega^{-1}(df)$ whose flow ϕ_t^f satisfy $(\phi_t^f)^*\Omega = \Omega$.

Lemma (Joyce's deformation)

 (M, Ω_I, Ω_J) compact non-degenerate GK mfd, $\Omega = \operatorname{Re}(\Omega_I) = \operatorname{Re}(\Omega_J)$ a real symplectic form.

- $f \in C^{\infty}(M)$ gives rise to a Hamiltonian vector field $X_f = \Omega^{-1}(df)$ whose flow ϕ_t^f satisfy $(\phi_t^f)^*\Omega = \Omega$.
- $\Longrightarrow (\Omega_I, \Omega_{J_t} := (\phi_t^f)^*(\Omega_J))$ satisfy the conditions (1), (2), (3) for $|t| < \varepsilon$.

Lemma (Joyce's deformation)

 (M, Ω_I, Ω_J) compact non-degenerate GK mfd, $\Omega = \operatorname{Re}(\Omega_I) = \operatorname{Re}(\Omega_J)$ a real symplectic form.

- $f \in C^{\infty}(M)$ gives rise to a Hamiltonian vector field $X_f = \Omega^{-1}(df)$ whose flow ϕ_t^f satisfy $(\phi_t^f)^*\Omega = \Omega$.
- $\Longrightarrow (\Omega_I, \Omega_{J_t} := (\phi_t^f)^*(\Omega_J))$ satisfy the conditions (1), (2), (3) for $|t| < \varepsilon$.

Example

If $(M^{4n}, g_{CY}, I, J, K)$ is a hyper-Kähler manifold, then it admits many non-Kähler GK metrics.

 $(M^{4n},\Omega_I,\Omega_J)$ a compact non-degenerate GK mfd, $\Omega=\mathrm{Re}(\Omega_I)=\mathrm{Re}(\Omega_J),\ G=\mathrm{Ham}(M,\Omega)=\left\langle\phi_1^f,f\in C^\infty(M)\right\rangle$ the group of Hamiltonian diffeomorphisms

 $(M^{4n},\Omega_I,\Omega_J)$ a compact non-degenerate GK mfd, $\Omega=\mathrm{Re}(\Omega_I)=\mathrm{Re}(\Omega_J),\ G=\mathrm{Ham}(M,\Omega)=\left\langle\phi_1^f,f\in C^\infty(M)\right\rangle$ the group of Hamiltonian diffeomorphisms

• $G \times G$ acts on (Ω_I, Ω_J) preserving (1) and (2) and **locally** (3):

$$\mathcal{K}_{(\Omega_{I},\Omega_{J})}^{c} := \Big\{ \big(\phi^{*}(\Omega_{I}), \psi^{*}(\Omega_{J}) \big), (\phi, \psi) \in G \times G : \\ \big(\phi^{*}(\Omega_{I}), \psi^{*}(\Omega_{J}) \big) \text{ satisfy (3)} \Big\}.$$

 $(M^{4n},\Omega_I,\Omega_J)$ a compact non-degenerate GK mfd, $\Omega=\mathrm{Re}(\Omega_I)=\mathrm{Re}(\Omega_J),\ G=\mathrm{Ham}(M,\Omega)=\left\langle\phi_1^f,f\in C^\infty(M)\right\rangle$ the group of Hamiltonian diffeomorphisms

• $G \times G$ acts on (Ω_I, Ω_J) preserving (1) and (2) and **locally** (3):

$$K_{(\Omega_I,\Omega_J)}^c := \Big\{ \big(\phi^*(\Omega_I), \psi^*(\Omega_J) \big), (\phi, \psi) \in G \times G : \\ \big(\phi^*(\Omega_I), \psi^*(\Omega_J) \big) \text{ satisfy (3)} \Big\}.$$

• $G_d = \{(\phi, \phi) \in G \times G : \phi \in G\}$ acts **globally** on $\mathcal{K}^c_{(\Omega_I, \Omega_J)}$ and

$$K_{(\Omega_{I},\Omega_{J})} := K_{(\Omega_{I},\Omega_{J})}^{c} / G_{d}
\cong \{ (\Omega_{I}, \phi^{*}(\Omega_{J})) : (\Omega_{I}, \phi^{*}(\Omega_{J})) \text{ satisfies (3)} \}.$$

Theorem 1 (Streets-A.)

 $K^c_{(\Omega_I,\Omega_J)}$ has a formal symplectic structure Ω such that G_d acts with moment map

$$\mu(\Omega_{I'},\Omega_{J'}) = \left(\operatorname{Im}(\Omega_{I'} - \Omega_{J'})\right)^{2n} - \lambda \left(\operatorname{Im}(\Omega_{I'} + \Omega_{J'})\right)^{2n},$$

where $\lambda := \frac{\int_{M} (\Omega_{I} - \Omega_{J})^{2n}}{\int_{M} (\Omega_{I} + \Omega_{J})^{2n}}$ is a topological constant.

Conjecture (GIT package)

 $K^c_{(\Omega_I,\Omega_J)}$ admits a unique up to the action of G_d pair $(\Omega_{I'},\Omega_{J'})$ such that

$$\mu(\Omega_{I'},\Omega_{J'}) = \left(\operatorname{Im}(\Omega_{I'} - \Omega_{J'})\right)^{2n} - \lambda \left(\operatorname{Im}(\Omega_{I'} + \Omega_{J'})\right)^{2n} = 0$$

Conjecture (GIT package)

 $K^c_{(\Omega_I,\Omega_J)}$ admits a unique up to the action of G_d pair $(\Omega_{I'},\Omega_{J'})$ such that

$$\mu(\Omega_{I'},\Omega_{J'}) = \left(\operatorname{Im}(\Omega_{I'} - \Omega_{J'})\right)^{2n} - \lambda \left(\operatorname{Im}(\Omega_{I'} + \Omega_{J'})\right)^{2n} = 0$$

Equivalently, there exists a unique non-degenerate GK structure $(\Omega_I, \phi^*(\Omega_J)) \in \mathcal{K}_{(\Omega_I, \Omega_J)}$ $(\phi \in \operatorname{Ham}(M, \Omega))$ such that

$$\Phi := \frac{\left(\operatorname{Im}(\Omega_I - \Omega_{J'})\right)^{2n}}{\left(\operatorname{Im}(\Omega_I + \Omega_{J'})\right)^{2n}} = \lambda.$$

Lemma (Streets-A.)

Let (Ω_I, Ω_J) correspond to the GK structure (g, I, J, b) and

$$\Phi = \frac{\left(\operatorname{Im}(\Omega_I - \Omega_J)\right)^{2n}}{\left(\operatorname{Im}(\Omega_I + \Omega_J)\right)^{2n}}.$$

Then $\rho^{B,I} = -\sqrt{-1}\partial_J\bar{\partial}_J\Phi$ and $\rho^{B,J} = -\sqrt{-1}\partial_I\bar{\partial}_I\Phi$ are the Ricci forms of the Bismut connections $\nabla^{B,I}$ and $\nabla^{B,J}$ of (g,I) and (g,J).

Lemma (Streets-A.)

Let (Ω_I, Ω_J) correspond to the GK structure (g, I, J, b) and

$$\Phi = rac{\left(\operatorname{Im}(\Omega_I - \Omega_J)
ight)^{2n}}{\left(\operatorname{Im}(\Omega_I + \Omega_J)
ight)^{2n}}.$$

Then $\rho^{B,I} = -\sqrt{-1}\partial_J\bar{\partial}_J\Phi$ and $\rho^{B,J} = -\sqrt{-1}\partial_I\bar{\partial}_I\Phi$ are the Ricci forms of the Bismut connections $\nabla^{B,I}$ and $\nabla^{B,J}$ of (g,I) and (g,J). If M is compact, $\Phi = \lambda \Leftrightarrow \rho^{B,I} = \rho^{B,J} = 0$.

Corollary (Alexandrov–Ivanov, Ivanov–Papadopoulos)

A compact non-degenerate GK mfd (M, Ω_I, Ω_J) satisfies $\Phi = \lambda \Leftrightarrow (\Omega_I, \Omega_J)$ is hyper-Kähler $(g = g_{CY})$.

Corollary (Alexandrov–Ivanov, Ivanov–Papadopoulos)

A compact non-degenerate GK mfd (M, Ω_I, Ω_J) satisfies $\Phi = \lambda \Leftrightarrow (\Omega_I, \Omega_J)$ is hyper-Kähler $(g = g_{\rm CY})$.

Conjecture (Calabi–Yau Conjecture for non-degenerate GK structures)

Let (M, Ω_I, Ω_J) be a compact non-degenerate GK manifold. Then $\exists ! (\Omega_I, \phi^*(\Omega_J)) (\phi \in \operatorname{Ham}(\Omega))$ which corresponds to a hyper-Kähler structure.

Corollary (Alexandrov-Ivanov, Ivanov-Papadopoulos)

A compact non-degenerate GK mfd (M, Ω_I, Ω_J) satisfies $\Phi = \lambda \Leftrightarrow (\Omega_I, \Omega_J)$ is hyper-Kähler $(g = g_{\rm CY})$.

Conjecture (Calabi–Yau Conjecture for non-degenerate GK structures)

Let (M, Ω_I, Ω_J) be a compact non-degenerate GK manifold. Then $\exists ! (\Omega_I, \phi^*(\Omega_J)) (\phi \in \operatorname{Ham}(\Omega))$ which corresponds to a hyper-Kähler structure.

 \Leftrightarrow each non-degenerate GK structure is obtained from the Joyce construction and $K_{(\Omega_I,\Omega_J)}$ is a **(non-abelian)** analog of a Kähler class.

Recall:

Theorem (Cao)

Let (X^m, Θ) be a CY manifold. Then, for any Kähler metric ω_0 the solution to the Kähler-Ricci flow

$$\frac{\partial}{\partial t}\omega_t = -2\rho_{\omega_t}, \ (\omega_t)_{|_{t=0}} = \omega_0$$

exists for all $t \in [0, +\infty)$, $\omega_t \in K_{[\omega_0]}$ and $\lim_{t \to \infty} \omega_t = \omega_{\mathrm{CY}}$ in C^{∞} .

Recall:

Theorem (Cao)

Let (X^m, Θ) be a CY manifold. Then, for any Kähler metric ω_0 the solution to the Kähler-Ricci flow

$$\frac{\partial}{\partial t}\omega_t = -2\rho_{\omega_t}, \ (\omega_t)_{|_{t=0}} = \omega_0$$

exists for all $t \in [0, +\infty)$, $\omega_t \in K_{[\omega_0]}$ and $\lim_{t \to \infty} \omega_t = \omega_{\mathrm{CY}}$ in C^{∞} .

Main tool is the reduction to a parabolic Monge-Ampère PDE:

$$\frac{\partial}{\partial t}\varphi_t = 2\log\left(\frac{\omega_{\varphi_t}^m}{\Theta \wedge \bar{\Theta}}\right) = \mathrm{MA}(\varphi_t), \quad \varphi_t \in \mathcal{K}_{[\omega_0]}.$$

Theorem (Streets-Tian)

Let (M, g, I, J, b) be a compact GK manifold. Then, the solution $\omega_t = g_t I$ to the **generalized Kähler Ricci flow**

$$\frac{\partial}{\partial t}\omega_t = -2(\rho_{\omega_t}^{B,I})_I^{1,1}, \ \ (\omega_t)_{|_{t=0}} = \omega_I (=gI)$$

exists for $t \in [0, T_{\text{max}})$ and $\exists (J_t, b_t) \text{ s.t. } (g_t, I, J_t, b_t)$ is GK.

Theorem (Streets-Tian)

Let (M, g, I, J, b) be a compact GK manifold. Then, the solution $\omega_t = g_t I$ to the **generalized Kähler Ricci flow**

$$\frac{\partial}{\partial t}\omega_t = -2(\rho_{\omega_t}^{B,I})_I^{1,1}, \ \ (\omega_t)_{|_{t=0}} = \omega_I (=gI)$$

exists for $t \in [0, T_{\max})$ and $\exists (J_t, b_t)$ s.t. (g_t, I, J_t, b_t) is GK.

This is a parabolic system (not a single PDE) so there is no C^{α} (deGiorgi–Nash–Moser/Krylov–Safonov) estimate nor $C^{2,\alpha}$ (Evans–Krylov) estimate...

Theorem 2 (Streets-A.)

Let (M,Ω_I,Ω_J) be a compact non-degenerate GK mdf and (g_t,I,J_t,b_t) the solution of the GK Ricci flow starting from (Ω_I,Ω_J) . Then (g_t,I,J_t,b_t) corresponds to $(\Omega_I,\Omega_{J_t})\in K_{(\Omega_I,\Omega_J)}$ where $\Omega_{J_t}=\phi_t^*(\Omega_J)$ for ϕ_t being the hamiltonian isotopy generated by the momentum Φ_t .

Theorem 2 (Streets-A.)

Let (M,Ω_I,Ω_J) be a compact non-degenerate GK mdf and (g_t,I,J_t,b_t) the solution of the GK Ricci flow starting from (Ω_I,Ω_J) . Then (g_t,I,J_t,b_t) corresponds to $(\Omega_I,\Omega_{J_t})\in K_{(\Omega_I,\Omega_J)}$ where $\Omega_{J_t}=\phi_t^*(\Omega_J)$ for ϕ_t being the hamiltonian isotopy generated by the momentum Φ_t . Furthermore,

$$\frac{\partial}{\partial t} \Phi_t = -\Delta_{g_t} \Phi_t$$

Using the maximum principle for

$$\frac{\partial}{\partial t}\Phi_t = -\Delta_{g_t}\Phi_t$$

Corollary (New a priori estimates)

Let (M, Ω_I, Ω_J) be a compact non-degenerate GK mdf and $(g_t, I, J_t, b_t), t \in [0, T_{\max})$ the solution of the GK Ricci flow starting from (Ω_I, Ω_J) . Then

$$\begin{split} \sup_{M\times[0,T_{\max})}|\Phi_t| &\leq \sup_{M\times\{0\}}|\Phi_0|\\ \sup_{M\times\{t\}}|\nabla\Phi_t|^2 &\leq t^{-1}\Big(\sup_{M\times\{0\}}|\Phi_0|^2\Big) \end{split}$$

Using the maximum principle for

$$\frac{\partial}{\partial t}\Phi_t = -\Delta_{g_t}\Phi_t$$

Corollary (New a priori estimates)

Let (M, Ω_I, Ω_J) be a compact non-degenerate GK mdf and $(g_t, I, J_t, b_t), t \in [0, T_{\max})$ the solution of the GK Ricci flow starting from (Ω_I, Ω_J) . Then

$$\begin{split} \sup_{M\times[0,T_{\max})}|\Phi_t| &\leq \sup_{M\times\{0\}}|\Phi_0| \Rightarrow \omega_t^{2n} \leq C\omega_0^{2n}, \ |b_t|^2 \leq C\\ \sup_{M\times\{t\}}|\nabla\Phi_t|^2 &\leq t^{-1}\Big(\sup_{M\times\{0\}}|\Phi_0|^2\Big) \Rightarrow \lim_{t\to\infty}\Phi_t = \lambda \end{split}$$

Theorem 3 (Streets-A.)

Let (M, g_0, I, J_0, b_0) be a compact **non-degenerate** GK mdf and $(g_t, I, J_t, b_t), t \in [0, T_{\max})$ the solution of the GK Ricci flow. Suppose there exits a uniform constant C > 0 s.t.

$$\frac{1}{C}g_0\leq g_t\leq Cg_0,$$

Then $T_{\max} = \infty$, $\lim_{t \to \infty} g_t = g_{\infty}$ in C^{∞} and $(g_{\infty}, I, J_{\infty}, b_{\infty})$ is Hyper-Kähler with $J_{\infty} = \phi_{\infty}^*(J_0), \phi_{\infty} \in \operatorname{Ham}(M, \Omega)$.

Theorem 3 (Streets-A.)

Let (M, g_0, I, J_0, b_0) be a compact **non-degenerate** GK mdf and $(g_t, I, J_t, b_t), t \in [0, T_{\max})$ the solution of the GK Ricci flow. Suppose there exits a uniform constant C > 0 s.t.

$$\frac{1}{C}g_0\leq g_t\leq Cg_0,$$

Then $T_{\max} = \infty$, $\lim_{t \to \infty} g_t = g_{\infty}$ in C^{∞} and $(g_{\infty}, I, J_{\infty}, b_{\infty})$ is Hyper-Kähler with $J_{\infty} = \phi_{\infty}^*(J_0), \phi_{\infty} \in \operatorname{Ham}(M, \Omega)$. \Rightarrow the Calabi-Yau conjecture for non-degenerate GK holds true.

Theorem 4 (Streets-A.)

Let (M, g_0, I, J_0, b_0) be a compact **non-degenerate** GK mdf and $(g_t, I, J_t, b_t), t \in [0, T_{\max})$ the solution of the GK Ricci flow. Suppose (M, I) is CY. Then there exits a constant $C = C(T_{\max}) > 0$ s.t.

$$\frac{1}{C}g_0 \leq g_t \leq Cg_0,$$

Theorem 4 (Streets-A.)

Let (M, g_0, I, J_0, b_0) be a compact **non-degenerate** GK mdf and $(g_t, I, J_t, b_t), t \in [0, T_{\max})$ the solution of the GK Ricci flow. Suppose (M, I) is CY. Then there exits a constant $C = C(T_{\max}) > 0$ s.t.

$$\frac{1}{C}g_0\leq g_t\leq Cg_0,$$

 $\Rightarrow T_{\max} = \infty$, $\lim_{t\to\infty} \omega_t = \omega_\infty$ where ω_∞ is a closed (1,1) current on (M, I).

THANK YOU!