Baire Spaces and Compactness

Mitrofan M. Choban

Department of Mathematics, Tiraspol State University Chishinău, Republic of Moldova, MD 2069 mmchoban@gmail.com

By a space we understand a Hausdorff topological space. A subset Z of a space X is τ -compact, if Z is a union of τ compact subsets of X. A subset B of a space X is bounded if for any locally finite family γ of open subsets the set $\{U \in \gamma : U \cap B \neq \emptyset\}$ is finite. A space X is called feebly compact if X is a bounded subset of X. A Baire space is a topological space such that every intersection of a countable collection of open dense sets in the space is also dense. It is well known that every Čech-complete space is a Baire space.

It is true the following general fact:

Theorem 1. Let Y be a bounded W_{δ} -subset of a regular space X. Then Y is a Baire space.

Every G_{δ} -subset is a W_{δ} -subset. The W_{δ} -subsets of compact spaces are characterized as open continuous images of paracompact Čech-complete spaces. There exists a paracompact G_{δ} -subset of a pseudocompact space which is not a Čechcomplete space.

Theorem 2. A paracompact p-space X is a W_{δ} -subset of some regular feebly compact space if and only if X is Čech-complete.

Our main interest is the following question posed by W. Roelcke in 1972: Is there a Hausdorff ω -bounded space which is not Baire? In 1972, Z. Frolik constructed an example of a meager countably compact space and, in 1996, J. R. Porter constructed an example of a countably compact, separable and meager space.

A space X is called:

 $-\omega(\tau)$ -bounded, if the closure clL in X of every subset $L \subseteq X$ of cardinality $|L| \leq \tau$ is compact;

– a $\sigma_{\tau}cc^*$ -space, if the closure of every τ -compact subset is compact.

Theorem 3. For each infinite cardinal τ there exists a meager Hausdorff $\sigma_{\tau}cc^*$ -space $B(\tau)$ for which $d(B(\tau) = \tau^+$.

However, the following problems remain unsolved:

Question 1. Is there a countably compact or an ω -bounded k-space which is not Baire?

Question 2 (W. Roelcke). Is there a sequentially compact space which is not Baire? Is there a sequentially compact ω -bounded space which is not Baire?