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By a space we understand a Hausdorff topological space. A subset Z of a
space X is τ -compact, if Z is a union of τ compact subsets of X. A subset B
of a space X is bounded if for any locally finite family γ of open subsets the
set {U ∈ γ : U ∩ B 6= ∅} is finite. A space X is called feebly compact if X is
a bounded subset of X. A Baire space is a topological space such that every
intersection of a countable collection of open dense sets in the space is also dense.
It is well known that every Čech-complete space is a Baire space.

It is true the following general fact:

Theorem 1. Let Y be a bounded Wδ-subset of a regular space X. Then Y is
a Baire space.

Every Gδ-subset is a Wδ-subset. The Wδ-subsets of compact spaces are char-
acterized as open continuous images of paracompact Čech-complete spaces. There
exists a paracompact Gδ-subset of a pseudocompact space which is not a Čech-
complete space.

Theorem 2. A paracompact p-space X is a Wδ-subset of some regular feebly
compact space if and only if X is Čech-complete.

Our main interest is the following question posed by W. Roelcke in 1972:
Is there a Hausdorff ω-bounded space which is not Baire? In 1972, Z. Fro-
lik constructed an example of a meager countably compact space and, in 1996,
J. R. Porter constructed an example of a countably compact, separable and mea-
ger space.

A space X is called:
– ω(τ)-bounded, if the closure clL in X of every subset L ⊆ X of cardinality

|L| ≤ τ is compact;
– a στ cc

∗-space, if the closure of every τ -compact subset is compact.



Theorem 3. For each infinite cardinal τ there exists a meager Hausdorff
στ cc

∗-space B(τ) for which d(B(τ) = τ+.

However, the following problems remain unsolved:

Question 1. Is there a countably compact or an ω-bounded k-space which is
not Baire?

Question 2 (W. Roelcke). Is there a sequentially compact space which is not
Baire? Is there a sequentially compact ω-bounded space which is not Baire?

2


