Dirichlet Sets and Arbault Sets of the Circle Group

Giuseppina Barbieri, Dikran Dikranjan, Anna Giordano Bruno, Hans Weber

Department of Mathematics, Udine University Udine, Italy pinuccia.barbieri@gmail.com, dikran.dikranjan@uniud.it, anna.giordanobruno@uniud.it, hans.weber@uniud.it

Keywords: characterized subgroup, circle group, Dirichlet set, Arbault set, factorizable subgroup.

A subset A of the circle group \mathbb{T} is a *Dirichlet set* if there exists an increasing sequence $\mathbf{u} = (u_n)_{n \in \mathbb{N}_0}$ in \mathbb{N} such that $||u_n x||$ uniformly converges to 0 on A. The subgroup $t_{\mathbf{u}}(\mathbb{T}) := \{x \in \mathbb{T} : ||u_n x|| \to 0\}$ is called a *characterized subgroup* of \mathbb{T} , while subsets of $t_{\mathbf{u}}(\mathbb{T})$ are called *Arbault sets*. The interest in these sets stems from descriptive set theory, number theory, harmonic analysis and topology [1,2].

Using strictly increasing sequences \mathbf{u} in \mathbb{N} such that u_n divides u_{n+1} for every $n \in \mathbb{N}$, we find in \mathbb{T} a family of closed perfect *D*-sets that are also Cantor-like sets. Moreover, we write \mathbb{T} as the sum of two closed perfect *D*-sets. As a consequence, we solve an open problem by showing that \mathbb{T} can be written as the sum of two of its proper characterized subgroups, i.e., \mathbb{T} is factorizable (see [3] for a related result). Moreover, we describe all countable subgroups of \mathbb{T} that are factorizable and we find a large class of uncountable characterized subgroups of \mathbb{T} that are factorizable.

References

- J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952) 253–317.
- [2] L. Bukovský, The structure of the real line, Birkhäuser, 2011.
- [3] P. Erdös, K. Kunen, R. D. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981) 187–199.