Dirichlet Sets and Arbault Sets of the Circle Group

Giuseppina Barbieri, Dikran Dikranjan,
Anna Giordano Bruno, Hans Weber

Department of Mathematics, Udine University
Udine, Italy

pinuccia.barbieri@gmail.com, dikran.dikranjan@uniud.it,
anna.giordanobruno@uniud.it, hans.weber@uniud.it

Keywords: characterized subgroup, circle group, Dirichlet set, Arbault set, factorizable subgroup.

A subset A of the circle group \mathbb{T} is a Dirichlet set if there exists an increasing sequence $\mathbf{u} = (u_n)_{n \in \mathbb{N}_0}$ in \mathbb{N} such that $\|u_n x\|$ uniformly converges to 0 on A. The subgroup $t_\mathbf{u}(\mathbb{T}) := \{x \in \mathbb{T} : \|u_n x\| \to 0\}$ is called a characterized subgroup of \mathbb{T}, while subsets of $t_\mathbf{u}(\mathbb{T})$ are called Arbault sets. The interest in these sets stems from descriptive set theory, number theory, harmonic analysis and topology [1,2].

Using strictly increasing sequences \mathbf{u} in \mathbb{N} such that u_n divides u_{n+1} for every $n \in \mathbb{N}$, we find in \mathbb{T} a family of closed perfect D-sets that are also Cantor-like sets. Moreover, we write \mathbb{T} as the sum of two closed perfect D-sets. As a consequence, we solve an open problem by showing that \mathbb{T} can be written as the sum of two of its proper characterized subgroups, i.e., \mathbb{T} is factorizable (see [3] for a related result). Moreover, we describe all countable subgroups of \mathbb{T} that are factorizable and we find a large class of uncountable characterized subgroups of \mathbb{T} that are factorizable.

References

