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We consider two application of classical invariant theory to combinatorial
problems.

Let an,i be the number of simple graphs with n vertices and k edges. Let
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,

be the ordinary generating function for the sequence {an,i}. Denote by [n](2) the
set of 2-subsets of [n]. Let Sn be the permutation group on the set [n]. The pair

group of Sn, denoted S
(2)
n is the permutation group induced by Sn which acts on

[n](2). We offer the following formula for the generating function gn(z):
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1

n!

∑
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n
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.

Let {Pn(x)}, n = degPn(x), be a system of polynomials over Q . We are
interested in finding polynomial identities for the system of polynomials, i.e.,
identities of the form

F (P0(x), P1(x), . . . , Pn(x)) = 0,

where F is some polynomial in n + 1 variables. Using methods of classical in-
variant theory a general approach to find identities for some well-known families
of polynomials (Bernoulli, Euler, Hermite, Fibonacci, Lucas, Kravchuk polyno-
mials) is proposed.


