On an Equation Involving Fractional Powers with Prime Numbers of a Special Type

Zhivko Petrov

Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski" 5, J. Bourchier Blvd, 1164 Sofia, Bulgaria zhpetrov@fmi.uni-sofia.bg

Keywords: Diophantine equation, prime numbers, almost prime numbers.

We consider the equation

(1)
$$[p_1^c] + [p_2^c] + [p_3^c] = N,$$

where $c \in \mathbb{R}$, c > 1, $N \in \mathbb{N}$ and [t] denotes the integer part of t. We prove the following

Theorem. Suppose that $1 < c < \frac{41}{40}$. Then for every sufficiently large N the equation (1) has a solution in prime numbers p_1 , p_2 , p_3 , such that each of the numbers $p_1 + 2$, $p_2 + 2$, $p_3 + 2$ has at most $\left[\frac{59}{41-40c}\right]$ prime factors, counted with the multiplicity.

References

[1] Zh. Petrov, On an equation involving fractional powers with prime numbers of a special type, 2017.