On the Covering Number of Small Symmetric, and Alternating Groups, and Some Sporadic Simple Groups

Daniela Nikolova-Popova¹, Luise-Charlotte Kappe², Eric Swartz³, Spyros Magliveras¹, Michael Epstein¹

¹Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA dpopova@fau.edu, spyros@fau.edu, mepstein2012@fau.edu

²Department of Mathematical Sciences, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA menger@math.binghamton.edu

> ³Department of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA easwartz@wm.edu

MSC 2010: 20D06, 20D60, 20D08, 20-04; secondary 20F99.

We say that a group G has a finite covering if G is a set theoretical union of finitely many proper subgroups. The minimal number of subgroups needed for such a covering is called the covering number of G denoted by $\sigma(G)$:

Let S_n be the symmetric group on nletters. For odd nMaroti determined $\sigma(S_n)$ with the exception of n=9, and gave estimates for n even showing that $\sigma(S_n) \leq 2n-2$. We show that $\sigma(S_8) = 64$, $\sigma(S_{10}) = 221$, $\sigma(S_{12}) = 761$. We also show that Maroti's result for odd n holds without exception proving that $\sigma(S_9) = 256$. We establish in addition that the Mathieu group M_{12} has covering number 208, and improve the estimate for the Janko group J_1 given by P. E. Holmes.

In another paper, we establish the covering number of A_9 , and A_{11} . As of now, the smallest values of n for which the covering numbers of S_n , and A_n are not known are n = 14, and n = 12, respectively.

The methods we use involve GAP calculations, incidence matrices and linear programming.

The coverings turn out to be dependent on the arithmetic nature of n. Some results for larger classes of Sn have been established.

References

- [1] Luise-Charlotte Kappe, Daniela Nikolova-Popova and Eric Swartz, On the covering number of small symmetric groups and some sporadic simple groups, *Groups, Groups Complex. Cryptol.* 2016; 8 (2):135–154.
- [2] M. Epstein, S. Magliveras and D. Nikolova, The covering numbers of A_9 and A_{11} , J. Combin. Math. Combin. Comput., to appear in May, 2017.
- [3] E. Swartz, On the covering number of symmetric groups having degree divisible by six, *Discrete Math.*, 339(11), 2016, 2593–2604.
- [4] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.7, 2006, http://www.gap-system.org.
- [5] Gurobi Optimizer Reference Manual, Gurobi Optimization, Inc., 2014, http://www.gurobi.com.