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An algebra over a field K is right-commutative if it satisfies the polynomial
identity (zixe)xs = (x1x3)xs. Similarly the identity of left-commutativity is
x1(zows) = wo(x123). Algebras which are both right- and left-commutative are
bicommutative. One-sided commutative algebras appeared already in the paper
by Cayley [1] in 1857. In modern language this is the right-symmetric Witt
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algebra W™ = {fdm | f € K[x]} with multiplication <f1dx> * <f2d:c> =
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an example of a Novikov algebra. (Novikov algebras and their opposite were
introduced in the 1970s and 1980s by Gel’fand and Dorfman in their study
of the Hamiltonian operator in finite-dimensional mechanics and by Balinskii
and Novikov in relation with the equations of hydrodynamics.) Examples of
bicommutative algebras are the two-dimensional algebras Ay ,, m,0 € K, gen-
erated by an element 7 and with multiplication rules r - r? = 772, r2 . r = or?,
r2 . r?2 = wor?. The structure of the free d-generated bicommutative algebra Fj
and its most important numerical invariants were described by Dzhumadil’daev,
Ismailov, and Tulenbaev [5]. Translating one of their results, if F; is generated
by X4 = {z1,...,24}, then F? is isomorphic to the subalgebra of K[Yy, Z4] with
basis all monomials of positive degree both in Yy and Z;. Hence bicommuta-
tive algebras are very close to commutative associative algebras. The next two
theorems are joint with Bekzat K. Zhakhayev [4].



Theorem 1. ( [4]) Finitely generated bicommutative algebras over any field are
weakly noetherian, i.e., satisfy the ascending chain condition for two-sided ideals.
The algebra Fy has one-sided ideals which are not finitely generated and hence is
not noetherian.

Theorem 2. ( [4]) The variety B of bicommutative algebras over a field of arbi-
trary characteristic satisfies the Specht property, i.e., its subvarieties have finite
bases for their polynomial identities.

When charK = 0 this is an immediate consequence of the results in [5] and
Theorem 1. In positive characteristic the proof uses the Higman-Cohen method
( [6], [2]) which is one of the main tools to prove the Specht property for groups
and algebras in positive characteristic.

By [5] the codimension sequence of the variety B is ¢;(B8) = 1, ¢, (B) = 2" -2,
n=2,3,.... Hence expB = nh_)rrolo Ven(B) = 2.

Theorem 3. ( [3]) Over a field of characteristic O the variety B is minimal. If
U is a proper subvariety of B satisfying a polynomial identity f = 0 of degree k,
then exp¥ = 1 and the codimension sequence c,(V), n =1,2,..., is bounded by
a polynomial in n of degree k — 1.

Theorem 4. ( [3]) Over a field of characteristic O the variety B is generated by
the two-dimensional algebra Ay 1.
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