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An algebra over a field K is right-commutative if it satisfies the polynomial
identity (x1x2)x3 = (x1x3)x2. Similarly the identity of left-commutativity is
x1(x2x3) = x2(x1x3). Algebras which are both right- and left-commutative are
bicommutative. One-sided commutative algebras appeared already in the paper
by Cayley [1] in 1857. In modern language this is the right-symmetric Witt
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This algebra is left-commutative and right-symmetric and hence is

an example of a Novikov algebra. (Novikov algebras and their opposite were
introduced in the 1970s and 1980s by Gel’fand and Dorfman in their study
of the Hamiltonian operator in finite-dimensional mechanics and by Balinskii
and Novikov in relation with the equations of hydrodynamics.) Examples of
bicommutative algebras are the two-dimensional algebras Aπ,%, π, % ∈ K, gen-
erated by an element r and with multiplication rules r · r2 = πr2, r2 · r = %r2,
r2 · r2 = π%r2. The structure of the free d-generated bicommutative algebra Fd
and its most important numerical invariants were described by Dzhumadil’daev,
Ismailov, and Tulenbaev [5]. Translating one of their results, if Fd is generated
by Xd = {x1, . . . , xd}, then F 2

d is isomorphic to the subalgebra of K[Yd, Zd] with
basis all monomials of positive degree both in Yd and Zd. Hence bicommuta-
tive algebras are very close to commutative associative algebras. The next two
theorems are joint with Bekzat K. Zhakhayev [4].



Theorem 1. ( [4]) Finitely generated bicommutative algebras over any field are
weakly noetherian, i.e., satisfy the ascending chain condition for two-sided ideals.
The algebra F1 has one-sided ideals which are not finitely generated and hence is
not noetherian.

Theorem 2. ( [4]) The variety B of bicommutative algebras over a field of arbi-
trary characteristic satisfies the Specht property, i.e., its subvarieties have finite
bases for their polynomial identities.

When charK = 0 this is an immediate consequence of the results in [5] and
Theorem 1. In positive characteristic the proof uses the Higman-Cohen method
( [6], [2]) which is one of the main tools to prove the Specht property for groups
and algebras in positive characteristic.

By [5] the codimension sequence of the variety B is c1(B) = 1, cn(B) = 2n−2,
n = 2, 3, . . .. Hence expB = lim

n→∞
n
√
cn(B) = 2.

Theorem 3. ( [3]) Over a field of characteristic 0 the variety B is minimal. If
V is a proper subvariety of B satisfying a polynomial identity f = 0 of degree k,
then expV = 1 and the codimension sequence cn(V), n = 1, 2, . . ., is bounded by
a polynomial in n of degree k − 1.

Theorem 4. ( [3]) Over a field of characteristic 0 the variety B is generated by
the two-dimensional algebra A1,−1.
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