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Asymptotics of solutions to the wave equation on a manifold M are well
known to be related to the geometry of M and to dynamical properties of its
geodesic flow.

If M is a bounded Euclidean domain €2, or more generally a compact manifold,
these solutions can be written as sums of oscillating eigenstates of the Laplacian.
The frequencies of oscillation (eigenvalues) are related to the geometry and dy-
namics by, for example, Weyl asymptotics. Such a setting is a closed system,
because all geodesics are bounded, and so none escape.

If M is instead the complement of €2, the spectrum of the Laplacian is contin-
uous rather than discrete, and we attempt to write solutions to the wave equation
as sums of oscillating and decaying resonant states, up to a small remainder. In
many situations this has been done, with the frequencies of oscillation and rates
of decay (resonances) and the size of the remainder depending on geometry and
dynamics. Similar results obtain when M is a manifold with suitable asymptoti-
cally Euclidean ends, or even some more general ends. Such a setting is an open
system, because modulo a compact set all geodesics escape to infinity.

An interesting intermediate situation is a manifold with infinite cylindrical
ends, which we call a mixed system. In this case the continuous spectrum has
increasing multiplicity as energy grows, and in general embedded resonances and
eigenvalues can accumulate at infinity. However, we prove that if geodesic trap-
ping is sufficiently mild, then such an accumulation is ruled out, and moreover
the cutoff resolvent is uniformly bounded at high energies. We deduce from this
the existence of resonance free regions and compute asymptotic expansions for
solutions of the wave equation.
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